OXFORD

Would you have survived the sinking of the Titanic?

Econometrics: Computer Modelling

Felix Pretis
Programme for Economic Modelling Oxford Martin School, University of Oxford

Lecture 2: Micro-Econometrics: Limited Dep. Variable Models

- 1: Intro to Econometric Software \& Cross-Section Regression
- 2: Micro-Econometrics: Limited Indep. Variable
- 3: Macro-Econometrics: Time Series

Aim of this Course

Last time:

- Introduce econometric modelling in practice
- Introduce OxMetrics/PcGive Software

Today:

- Binary dependent variables \& Count data
- Probability of being accepted into a Masters/PhD Programme (between $[0,1]$)
- Number of arrests (count)
- Prob. of surviving the Titanic sinking, participating in labour force
- Additional functions in OxMetrics/PcGive

- Economies high dimensional, interdependent, heterogeneous, and evolving: comprehensive specification of all events is impossible.
- Economic Theory
- likely wrong and incomplete
- meaningless without empirical support
- Econometrics to discover new relationships from data
- Econometrics can provide empirical support. . . or refutation.

Making sense of data

Institute for

Structure of data

	admit	gre	gpa	rank	rank1	rank2	rank3	rank4	
1	0	380	3.61	3	0	0	1	0	
2	1	660	3.67	3	0	0	1	0	
3	1	800	4	1	1	0	0	0	
4	1	640	3.19	4	0	0	0	1	
5	0	520	2.93	4	0	0	0	1	
6	1	760	3	2	0	1	0	0	
7	1	560	2.98	1	1	0	0	0	
8	0	400	3.08	2	0	1	0	0	
9	1	540	3.39	3	0	0	1	0	
10	0	700	3.92	2	0	1	0	0	
11	0	800	4	4	0	0	0	0	
12	0	440	3.22	1	1	0	0	0	0
13	1	760	4	1	1	0	0	0	

Data on admission to graduate school (US) as a function of:

- GPA
- GRE score
- Rank of undergraduate institution

Dataset: "gradschool.xlsx"
Other file formats? Datasets: .in7 \& .bn7 files

Build a Linear Probability Model (LPM) for gradschool admission:

- Create a new database in OxMetrics
- Go to File, New, OxMetrics Data
- Set start period = 1 (undated for cross-sectional data)
- Copy \& Paste Data from Excel file: "gradschool.xlsx"
- Save as .in7 data file on your computer
- Or open .csv in OxMetrics
- Construct appropriate variables to take the rank of the university into account
- Algebra: rank1 = (rank == 1) ? 1 : 0; creates a dummy variable $=1$ if rank==1
- Plot the observed and predicted values against GRE. Based on the model output highlight shortcomings of the LPM

Plot the data!

Linear Probability Model

Fit a simple Linear probability model (OLS)

	Coefficient	Std.Error	t-value	t-prob Part. ${ }^{\wedge} 2$
Constant	-0.258910	0.2160	-1.20	0.23140 .0036
gre	0.000429572	0.0002107	2.04	0.04220 .0104
gpa	0.155535	0.06396	2.43	0.01550 .0148
rank2	-0.162365	0.06771	-2.40	$0.0170 \quad 0.0144$
rank 3	-0.290570	0.07025	-4.14	$0.0000 \quad 0.0416$
rank 4	-0.323026	0.07932	-4.07	$0.0001 \quad 0.0404$
sigma	0.444866	RSS		77.9750245
R^2	0.100401	F $(5,394)$	8.795	[0.000]**
Adj. R^2	0.0889844	log-likel	hood	-240.56
no. of observation	S 400	no. of par	meters	6
mean(admit)	0.3175	se(admit)		0.466087
Normality test:	Chi^2(2) =	212.46	. 0000]**	
Hetero test:	F $(7,392)$	3.8513 [0	. 0005] **	
Hetero-X test:	F (8, 391)	3.6183 [0	. 0004] **	
RESET23 test:	$\mathrm{F}(2,392)=$	0.19773 [0	. 8207]	

Concerns with Linear Probability Model

- Assumes continuous dep. variable \& constant effect of covariates on probability of success (could exceed 1)
- Predicted values outside $[0,1]$ range: Test - Store...
- Heteroskedasticity by construction:

$$
\begin{align*}
P(y=1 \mid x) & =x^{\prime} \beta+u \tag{1}\\
V(u \mid x) & =x^{\prime} \beta\left(1-x^{\prime} \beta\right) \tag{2}
\end{align*}
$$

Binary response variable, link function $G(\cdot)$

$$
\begin{equation*}
P(y=1 \mid x)=G\left(\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}\right)=G\left(\beta_{0}+x \beta\right) \tag{3}
\end{equation*}
$$

- Probit:

$$
\begin{equation*}
P(y=1 \mid x)=\Phi\left(x^{\prime} \beta\right) \tag{4}
\end{equation*}
$$

$\Phi(\cdot)$ is the standard normal distribution function.

- Logistic Regression:

$$
\begin{equation*}
P(y=1 \mid x)=\frac{\exp \left(\beta_{0}+x \beta\right)}{1+\exp \left(\beta_{0}+x \beta\right)} \tag{5}
\end{equation*}
$$

- Maximum Likelihood Estimation
- No analytical solution

1) Log-Odds Ratio

Note that the odds ratio (probability of success over probability of failure) in the logit model is given as:

$$
\begin{equation*}
\frac{P(y=1 \mid x)}{1-P(y=1 \mid x)}=\exp \left(\beta_{0}+x \beta\right) \tag{6}
\end{equation*}
$$

Therefore, taking logs:

$$
\begin{equation*}
\log \left(\frac{P(y=1 \mid x)}{1-P(y=1 \mid x)}\right)=\beta_{0}+x \beta \tag{7}
\end{equation*}
$$

Thus, $100 \times \beta_{\mathrm{k}}$ has the interpretation as \% increase in odds ratio for a one-unit increase in χ_{k}

2) Marginal Effects (ME)

$$
\begin{align*}
\frac{\partial P(y=1 \mid x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}}\left(\frac{\exp \left(\beta_{0}+x \beta\right)}{1+\exp \left(\beta_{0}+x \beta\right)}\right) \tag{8}\\
& =\beta_{k} P(y=1 \mid x)(1-P(y=1 \mid x)) \tag{9}
\end{align*}
$$

- ME_{k} same sign as coefficient β_{k}
- Marginal effects are largest when $P=0.5$, i.e. largest for individuals whose outcomes have the highest variance, $p(1-p)$.

Marginal Effects: Intuition

A big lead yields diminishing returns

Popular-vote win probability vs. popular-vote margin, based on the FiveThirtyEight polls-only forecast

goo.gl/LUD7ft

- Models for Discrete Data
- Binary Discrete Choice using PcGive
- Logit
- Newton's Method (no analytical solution - numerical algorithm)

What are the effects of rank, gpa, gre, on the probability of being admitted to Grad School?
unvessity of

```
CS( 1) Modelling admit by LOGIT
    The dataset is: gradschool.in7
    The estimation sample is 1 - 400
```

Constant

$$
\text { Coefficient Std.Error } \quad \text { t-value } \quad \text { t-prob }
$$

$$
-3.98998
$$

gre

$$
0.00226443
$$

gpa

$$
0.804038
$$

rank2

$$
-0.675443
$$

rank 3

$$
-1.34020
$$

rank 4

$$
-1.55146
$$

log-likelihood -229.258746
no. of observations
baseline log-lik

$$
-249.9883
$$

470.517492
0.3175 var(admit)

$$
\begin{array}{rr}
\text { t-value } & \text { t-prob } \\
-3.50 & 0.001 \\
2.07 & 0.039 \\
2.42 & 0.016 \\
-2.13 & 0.033 \\
-3.88 & 0.000 \\
-3.71 & 0.000
\end{array}
$$

Std.Error	t-value	t-prob
1.140	-3.50	0.001
0.001094	2.07	0.039
0.3318	2.42	0.016
0.3165	-2.13	0.033
0.3453	-3.88	0.000
0.4178	-3.71	0.000

mean (admit)
400
no. of states 2

Newton estimation (eps1=0.0001; eps2=0.005): Strong convergence

Count	Frequency	Probability	loglik
273	0.68250	0.68250	-97.40
127	0.31750	0.31750	-131.9
400	1.00000	1.00000	-229.3

Fitted Values of Logistic

Code in OxMetrics

Replicability is important!

Easy to make mistakes/forget what you have done. Code to reproduce your modelling:

- Batch code (intuitive code, similar to STATA do-files)
- Ox code (matrix programming language, similar to Matlab, R)

Batch Code:

- .fl files
- ALT+B: Batch code for last model

OXFORD

UNIVERSITY OXFORD


```
//Lecture 2: Micro-Econometrics, Limited Dependent Variable
//Linear Probability Model
module("PcGive");
    package("PcGive", "Cross-section");
    usedata("gradschool.in7");
    system
{
    Y = admit;
    Z = Constant, gre, gpa, rank2, rank3, rank4;
}
estimate("OLS-CS", 1, 1, 400, 1);
//Logistic Regression Model
module("PcGive");
package("LogitJD", "Binary");
usedata("gradschool.in7");
    system
{
    Y = admit;
    X = gre, gpa, rank2, rank3, rank4;
    F = Constant;
}
estimate("LOGIT", 1, 1, 400, 1);
```

Using Batch Code, estimate and store the following models for Gradschool admissions:
(1) A linear probability model without an intercept with a different base rank
(2) A logistic regression without GPA variable and using observations for the individuals $i=50, \ldots, 200$.
(3) In the form of comments in batch code, add the results of a test that all rank variables can be dropped from the model.

Estimate:

- LPM of admit on constant and rank1
- Logit Model of admit on constant and rank1

Compare predicted values between the two models.

Relating LPM to Logit Model

New Economic Thinking

- LPM of admit:

```
    The estimation sample is: 1 - 400
```

Coefficient	Std.Error	t-value	t-prob Part. $R^{\wedge} 2$	
0.277286	0.02481	11.2	0.0000	0.2388
0.263697	0.06354	4.15	0.0000	0.0415

Predicted: $0.277+0.26 \mathrm{I}_{\text {\{Rank }=1\}}$
$=0.54$ (for Rank = 1)

- Logit of admit:
t-value t-prob

Constant

$$
\begin{array}{r}
\text { Coefficient } \\
-0.957963 \\
1.12227
\end{array}
$$

Std.Error

$$
0.1213
$$

$-7.90 \quad 0.000$ rank1
0.2841
3.95
0.000

Predicted: $\frac{\exp \left(-0.957+1.12 \mathrm{I}_{\{\text {Rank }=1\}}\right)}{\left(1-\exp \left(-0.957+1.12 \mathrm{I}_{\{\text {Rank }=1\}}\right)\right)}$
$=0.277$ (for Rank $\neq 1$) and $=0.54$ (for Rank = 1)

OXFORD

So far: Binary dependent variable [0,1] Now: Count data - Poisson regression

- Dependent Variable: non-negative integers 0,1,2...
- y ~ Poisson (μ)
- linear model not ideal (as before)

Model expected value as exponential function:

$$
\begin{gather*}
y_{i}=E\left[y_{i} \mid x_{i}\right]+u_{i} \tag{10}\\
E\left[y_{i} \mid x\right]=\exp \left(\beta_{0}+\beta_{1} x_{1, i}+\cdots+\beta_{k} x_{k, i}\right) \tag{11}\\
y_{i}=e^{x_{i}^{\prime} \beta}+u_{i} \tag{12}
\end{gather*}
$$

Interpretation:

- Approx: $100 \beta_{\mathrm{k}} \Delta \mathrm{x}_{\mathrm{k}} \approx \% \Delta \mathrm{E}\left[y_{\mathrm{i}} \mid x\right]$
- Exact proportional change: $\exp \left(\beta_{k} \Delta x_{k}\right)-1$

Count data: $0,1,2, \ldots$, modelled as Poisson Distribution with λ_{i} :

$$
\begin{aligned}
E\left[y_{i} \mid x\right] & =\lambda_{i}=\exp \left(\beta_{0}+\beta_{1} x_{1, i}+\cdots+\beta_{k} x_{k, i}\right) \\
V\left[y_{i} \mid x\right] & =E\left[y_{i} \mid x\right] \\
P\left(Y=y_{i} \mid \lambda_{i}\left(x_{i}\right)\right) & =\frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!}
\end{aligned}
$$

Estimation using Maximum Likelihood.

Modelling Number of Arrests:

- Number of times a man is arrested in 1986: 'narr86'
- "arrests.in7"
- Plot the data!

Poisson Regression:

- Models for Discrete Data
- Count Data using PcGive

Model:

- Dependent variable: "narr86"
- Independent variables:
- "pcnv" (prop. of prior arrests that led to conviction)
- "avgsen" (avg sentence length)
- "tottime" (time in prison since 18)
- "ptime86" (months spent in prison)
- "qemp86" (quarters employed)
- "inc86" (income)
- "black", "hispan"

Poisson Output

unvessity of

	Coefficient	Std.Error t-value	t-prob
Constant	-0.617178	$0.06365-9.70$	0.000
penv	-0.405258	$0.08488-4.77$	0.000
avgsen	-0.0236365	$0.01993-1.19$	0.236
tottime	0.0243425	0.014761 .65	0.099
ptime86	-0.0985944	$0.02071-4.76$	0.000
qemp86	-0.0361131	$0.02892-1.25$	0.212
inc86 -	-0.00814627	$0.001038-7.85$	0.000
black	0.660356	0.073838 .94	0.000
hispan	0.499594	$0.07392 \quad 6.76$	0.000
log-likelihood -	-2249.08013	not truncated	
no. of observations	S 2725	no. of parameters	9
baseline log-lik	-2441.921	Test: Chi^2(8)	385.68 [0.0000$]$ **
AIC	4516.16026	AIC/n	1.65730652
mean (narr86)	0.404404	var(narr86)	0.737742

- Store the batch code as ".fl" file.
(1) What is the effect of being black/hispanic on the number of arrests?
(2) Manually conduct a likelihood ratio test of: excluding black, hispan
- Run Models in batch file.
- $\mathrm{LR}=-2\left[\ln \left(\hat{\mathrm{~L}}_{\mathrm{R}}\right)-\ln \left(\hat{\mathrm{L}}_{\mathrm{UR}}\right)\right] \sim \chi_{\mathrm{q}}^{2}$
- $\chi_{2}^{2}: 5 \%$ Critical value is 5.99

Task: Titanic Survival

OXFORD
\qquad Unvensity or
OXFORD

Institute for

Surviving the Titanic

What is your estimated probability of survival?

Task: Titanic Survival

- Create variables that measure the cabin class (\& clean data)
- Create a new database using "titanic_data.csv"
- Estimate the probability of survival ("survived") using
- Cabin class
- "sex": =1 if female
- "age": in years
- "num_sibs_sp": number of siblings or spouses on board
- "num_par_ch": number of parents or children on board

Answering the following questions:

(1) What is the unconditional probability of survival?
(2) What is the average survival rate for each class?
(3) Estimate the following models using three alternative methods and compare the results

- Create batch file for your models \& plots illustrating your results.
- What is the effect of cabin class/sex/age/having siblings or kids on-board on the probability of survival? How can the coefficients be interpreted? What difference do you find between the two methods used?
- What is your personal probability of survival for your assigned cabin class, given that you assume your parents were not on board, but your siblings/spouses (if you have any) would have been?
(4) What determines the number of siblings people had on board?
- Construct a test for class not affecting the number of siblings.

Institute for

OxMetrics and PcGive Exercise: Female labour force participation.

- Create a new database using "labourforce.xlsx"
- "inlf" binary variable =1 if married woman in labour force in 1975.

```
hours
kidslt6
kidsge6
age
educ
wage
repwage
hushrs
husage
huseduc
huswage
faminc
mtr
motheduc
fatheduc
unem
city
exper
```

```
hours worked, 1975
# kids < 6 years
# kids 6-18
woman's age in yrs
years of schooling
estimated wage from earns., hours
reported wage at interview in 1976
hours worked by husband, 1975
husband's age
husband's years of schooling
husband's hourly wage, }197
family income, 1975
fed. marginal tax rate facing woman
mother's years of schooling
father's years of schooling
unem. rate in county of resid.
=1 if live in city
actual labor mkt exper
```


Answering the following questions:

(1) Estimate models using two alternative methods and compare the results (create a batch file).
(2) What is the effect of age/educ/experience/having kids on the probability of being in the labour force? What difference do you find between the two methods used?
(3) Allow for diminishing marginal returns to experience. What are your findings?
(4) Build a more general model, including additional covariates. Which ones are significant? How could you reduce the number of variables?
(5) Using batch code, sequentially eliminate variables based on their significance (conduct backwards-elimination). What other model selection methods could you use? Advantages/disadvantages?
(6) Classification: Hold back 200 observations, predict the labour force participation for the hold-back sample. What proportion are correctly classified? Build a model that achieves the highest classification rate.

