

Would you have survived the sinking of the Titanic?

Econometrics: Computer Modelling

Felix Pretis

Programme for Economic Modelling Oxford Martin School, University of Oxford

Lecture 2: Micro-Econometrics: Limited Dep. Variable Models

- 1: Intro to Econometric Software & Cross-Section Regression
- 2: Micro-Econometrics: Limited Indep. Variable
- 3: Macro-Econometrics: Time Series

Last time:

- Introduce econometric modelling in practice
- Introduce OxMetrics/PcGive Software

Today:

- Binary dependent variables & Count data
 - Probability of being accepted into a Masters/PhD Programme (between [0,1])
 - Number of arrests (count)
 - Prob. of surviving the Titanic sinking, participating in labour force
- Additional functions in OxMetrics/PcGive

- Economies high dimensional, interdependent, heterogeneous, and evolving: comprehensive specification of all events is impossible.
- Economic Theory
 - likely wrong and incomplete
 - meaningless without empirical support
 - Econometrics to discover new relationships from data
 - Econometrics can provide empirical support. . . or refutation.

Structure of data

	admit	gre	gpa	rank	rank1	rank2	rank3	rank4
1	0	380	3.61	3	0	0	1	0
2	1	660	3.67	3	0	0	1	0
3	1	800	4	1	1	0	0	0
4	1	640	3.19	4	0	0	0	1
5	0	520	2.93	4	0	0	0	1
6	1	760	3	2	0	1	0	0
7	1	560	2.98	1	1	0	0	0
8	0	400	3.08	2	0	1	0	0
9	1	540	3.39	3	0	0	1	0
10	0	700	3.92	2	0	1	0	0
11	0	800	4	4	0	0	0	1
12	0	440	3.22	1	1	0	0	0
13	1	760	4	1	1	0	0	0

Data on admission to graduate school (US) as a function of:

- GPA
- GRE score
- Rank of undergraduate institution
- Dataset: "gradschool.xlsx"

Other file formats? Datasets: .in7 & .bn7 files

Build a Linear Probability Model (LPM) for gradschool admission:

- Create a new database in OxMetrics
 - Go to File, New, OxMetrics Data
 - Set start period = 1 (undated for cross-sectional data)
 - Copy & Paste Data from Excel file: "gradschool.xlsx"
 - Save as .in7 data file on your computer
- Or open .csv in OxMetrics
- Construct appropriate variables to take the rank of the university into account
 - Algebra: rank1 = (rank == 1) ? 1 : 0; creates a dummy variable = 1 if rank==1
- Plot the observed and predicted values against GRE. Based on the model output highlight shortcomings of the LPM

Felix Pretis (Oxford

Fit a simple Linear probability model (OLS)

EQ(1) Modelling admit by OLS-CS The dataset is: gradschool.in7 The estimation sample is: 1 - 400

	Coefficien	t	Std.Error	t-value	t-prob	Part.R ²
Constant	-0.25891	0	0.2160	-1.20	0.2314	0.0036
gre	0.00042957	2	0.0002107	2.04	0.0422	0.0104
gpa	0.15553	5	0.06396	2.43	0.0155	0.0148
rank2	-0.16236	5	0.06771	-2.40	0.0170	0.0144
rank3	-0.29057	0	0.07025	-4.14	0.0000	0.0416
rank4	-0.32302	6	0.07932	-4.07	0.0001	0.0404
siama	0.44486	6	RSS		77.97502	245
R^2	0.10040	1	F(5, 394) =	8.795	[0.000]	**
Adj.R^2	0.088984	4	log-likeli	hood	-240	.56
no. of observatio	ons 40	0	no. of par	ameters		6
mean(admit)	0.317	5	se(admit)		0.4660	087
Normality test:	Chi^2(2)	=	212.46 [0	.0000]**		
Hetero test:	F(7,392)	=	3.8513 [0	.0005]**		
Hetero-X test:	F(8,391)	=	3.6183 [0	.0004]**		
RESET23 test:	F(2,392)	=	0.19773 [0	.8207]		

Felix Pretis (Oxford)

Concerns with Linear Probability Model

- Assumes continuous dep. variable & constant effect of covariates on probability of success (could exceed 1)
- Predicted values outside [0,1] range: Test Store...
- Heteroskedasticity by construction:

$$P(y = 1|x) = x'\beta + u$$
 (1)

$$V(u|x) = x'\beta(1-x'\beta)$$
 (2)

Institute for New Economic Thinking At the exford martin school

Institute for New Economic Thinking At the exford martin school

Binary response variable, link function $G(\cdot)$

$$P(y=1|x) = G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k) = G(\beta_0 + x\beta)$$
 (3)

Probit:

$$P(y = 1|x) = \Phi(x'\beta)$$
(4)

 $\Phi(\cdot)$ is the standard normal distribution function.

Logistic Regression:

$$P(y = 1|x) = \frac{\exp(\beta_0 + \mathbf{x}\beta)}{1 + \exp(\beta_0 + \mathbf{x}\beta)}$$
(5)

- Maximum Likelihood Estimation
- No analytical solution

1) Log-Odds Ratio

Note that the odds ratio (probability of success over probability of failure) in the logit model is given as:

$$\frac{P(y=1|x)}{1-P(y=1|x)} = \exp(\beta_0 + x\beta)$$
(6)

Therefore, taking logs:

$$\log\left(\frac{P(y=1|x)}{1-P(y=1|x)}\right) = \beta_0 + x\beta$$
(7)

Thus, $100\times\beta_k$ has the interpretation as % increase in odds ratio for a one-unit increase in x_k

2) Marginal Effects (ME)

$$\frac{\partial P(y=1|x)}{\partial x_{k}} = \frac{\partial}{\partial x_{k}} \left(\frac{\exp\left(\beta_{0} + \mathbf{x}\beta\right)}{1 + \exp\left(\beta_{0} + \mathbf{x}\beta\right)} \right)$$

$$= \beta_{k} P(y=1|x) \left(1 - P(y=1|x)\right)$$
(8)
(9)

- ME_k same sign as coefficient β_k
- Marginal effects are largest when P = 0.5, i.e. largest for individuals whose outcomes have the highest variance, p(1-p).

A big lead yields diminishing returns

Popular-vote win probability vs. popular-vote margin, based on the FiveThirtyEight polls-only forecast

goo.gl/LUD7ft

- Models for Discrete Data
- Binary Discrete Choice using PcGive
- Logit
- Newton's Method (no analytical solution numerical algorithm)

What are the effects of rank, gpa, gre, on the probability of being admitted to Grad School?

CS(1) Modelling admit by LOGIT The dataset is: gradschool.in7 The estimation sample is 1 - 400

	Coefficient	Std.Error	t-value	t-prob	
Constant	-3.98998	1.140	-3.50	0.001	
gre	0.00226443	0.001094	2.07	0.039	
gpa	0.804038	0.3318	2.42	0.016	
rank2	-0.675443	0.3165	-2.13	0.033	
rank3	-1.34020	0.3453	-3.88	0.000	
rank4	-1.55146	0.4178	-3.71	0.000	
log-likelihood	-229.258746	no. of sta	tes	2	
no. of observatio	no. of parameters		6		
baseline log-lik	-249.9883	Test: Chi^	2(5)	41.459	[0.0000
AIC	470.517492	AIC/n		1.17629373	
mean(admit)	0.3175	var(admit)		0.216694	

Newton estimation (eps1=0.0001; eps2=0.005): Strong convergence

	Coun	t Frequency	Probability	loglik
State (0 27	3 0.68250	0.68250	-97.40
State 3	1 12	7 0.31750	0.31750	-131.9
Total	4 C	0 1.00000	1.00000	-229.3

Felix Pretis (Oxford

1 * *

Institute for New Economic Thinking At the exford martin school

Institute for New Economic Thinking

Replicability is important!

Easy to make mistakes/forget what you have done. Code to reproduce your modelling:

- Batch code (intuitive code, similar to STATA do-files)
- Ox code (matrix programming language, similar to Matlab, R)

Batch Code:

- .fl files
- ALT+B: Batch code for last model


```
🗊 📳 🔍 🦓 🕵 🝬 🚅 🐙 💮 //.. 🐇..
//Lecture 2: Micro-Econometrics, Limited Dependent Variable
//Linear Probability Model
module("PcGive");
package("PcGive", "Cross-section");
usedata("gradschool.in7");
system
    Y = admit;
    Z = Constant, gre, gpa, rank2, rank3, rank4;
estimate("OLS-CS", 1, 1, 400, 1);
//Logistic Regression Model
module("PcGive");
package("LogitJD", "Binary");
usedata("gradschool.in7");
system
    Y = admit;
    X = gre, gpa, rank2, rank3, rank4;
    F = Constant:
estimate("LOGIT", 1, 1, 400, 1);
```


Using **Batch Code**, estimate and store the following models for Gradschool admissions:

- A linear probability model without an intercept with a different base rank
- 2 A logistic regression without GPA variable and using observations for the individuals i = 50, ..., 200.
- In the form of comments in batch code, add the results of a test that all rank variables can be dropped from the model.

Estimate:

- LPM of admit on constant and rank1
- Logit Model of admit on constant and rank1

Compare predicted values between the two models.

• LPM of admit:

The estimation sample is: 1 - 400

	Coefficient	Std.Error	t-value	t-prob	Part.R^2
Constant	0.277286	0.02481	11.2	0.0000	0.2388
rank1	0.263697	0.06354	4.15	0.0000	0.0415

Predicted: $0.277 + 0.26I_{\text{Rank=1}}$

= 0.54 (for Rank = 1)

• Logit of admit:

 $\begin{array}{c} & \text{Coefficient Std.Error t-value t-prob} \\ \text{Constant} & -0.957963 & 0.1213 & -7.90 & 0.000 \\ \text{rank1} & 1.12227 & 0.2841 & 3.95 & 0.000 \\ \end{array}$ $\begin{array}{c} \text{Predicted:} & \frac{exp(-0.957+1.12I_{\{\text{Rank=1}\}})}{(1-exp(-0.957+1.12I_{\{\text{Rank=1}\}}))} \end{array}$

= 0.277 (for Rank \neq 1) and = 0.54 (for Rank = 1)

So far: Binary dependent variable [0,1] **Now**: Count data – Poisson regression

- Dependent Variable: non-negative integers 0,1,2...
- $y \sim \text{Poisson}(\mu)$
- linear model not ideal (as before)

Model expected value as exponential function:

$$y_i = \mathsf{E}[y_i|x_i] + \mathfrak{u}_i \tag{10}$$

$$\mathsf{E}[y_i|x] = \exp(\beta_0 + \beta_1 x_{1,i} + \dots + \beta_k x_{k,i}) \tag{11}$$

$$y_i = e^{x'_i\beta} + u_i \tag{12}$$

Interpretation:

- Approx: $100\beta_k\Delta x_k \approx \%\Delta E[y_i|x]$
- Exact proportional change: $exp(\beta_k \Delta x_k) 1$

Count data: 0, 1, 2, ..., modelled as **Poisson Distribution** with λ_i :

$$\begin{split} E[y_i|x] &= \lambda_i = \text{exp}(\beta_0 + \beta_1 x_{1,i} + \dots + \beta_k x_{k,i}) \\ V[y_i|x] &= E[y_i|x] \\ P\left(Y = y_i|\lambda_i(x_i)\right) &= \frac{e^{-\lambda_i}\lambda_i^{y_i}}{y_i!} \end{split}$$

Estimation using Maximum Likelihood.

Modelling Number of Arrests:

- Number of times a man is arrested in 1986: 'narr86'
- arrests.in7"
- Plot the data!

Poisson Regression:

- Models for Discrete Data
- Count Data using PcGive

Model:

- Dependent variable: "narr86"
- Independent variables:
 - "pcnv" (prop. of prior arrests that led to conviction)
 - "avgsen" (avg sentence length)
 - "tottime" (time in prison since 18)
 - "ptime86" (months spent in prison)
 - "qemp86" (quarters employed)
 - "inc86" (income)
 - "black", "hispan"

CS(1) Modelling narr86 by POISSON The dataset is: arrests.in7 The estimation sample is 1 - 2725

	Coefficient	Std.Error	t-value	t-prob	
Constant	-0.617178	0.06365	-9.70	0.000	
pcnv	-0.405258	0.08488	-4.77	0.000	
avgsen	-0.0236365	0.01993	-1.19	0.236	
tottime	0.0243425	0.01476	1.65	0.099	
ptime86	-0.0985944	0.02071	-4.76	0.000	
qemp86	-0.0361131	0.02892	-1.25	0.212	
inc86	-0.00814627	0.001038	-7.85	0.000	
black	0.660356	0.07383	8.94	0.000	
hispan	0.499594	0.07392	6.76	0.000	
log-likelihood	-2249.08013	not trunca	ted		
no. of observations 2725		no. of parameters		9	
baseline log-lik	-2441.921	Test: Chi^	2(8)	385.68	[0.0000]**
AIC	4516.16026	AIC/n		1.65730652	
mean(narr86)	0.404404	var(narr86)	0.737742	

- Store the batch code as ".fl" file.
- What is the effect of being black/hispanic on the number of arrests?
- Manually conduct a likelihood ratio test of: excluding black, hispan
 - Run Models in batch file.
 - $LR = -2 \left[ln \left(\hat{L}_R \right) ln \left(\hat{L}_{UR} \right) \right] \sim \chi_q^2$
 - χ^2_2 : 5% Critical value is 5.99

Surviving the Titanic What is your estimated probability of survival?

Task: Titanic Survival

- Create variables that measure the cabin class (& clean data)
- Create a new database using "titanic_data.csv"
- Estimate the probability of survival ("survived") using
 - Cabin class
 - sex": =1 if female
 - age": in years
 - "num_sibs_sp": number of siblings or spouses on board
 - "num_par_ch": number of parents or children on board

Answering the following questions:

- What is the unconditional probability of survival?
- What is the average survival rate for each class?
- Estimate the following models using three alternative methods and compare the results
 - Create batch file for your models & plots illustrating your results.
 - What is the effect of cabin class/sex/age/having siblings or kids on-board on the probability of survival? How can the coefficients be interpreted? What difference do you find between the two methods used?
 - What is your personal probability of survival for your assigned cabin class, given that you assume your parents were not on board, but your siblings/spouses (if you have any) would have been?
- What determines the number of siblings people had on board?
 - Construct a test for class not affecting the number of siblings.

OxMetrics and PcGive Exercise: Female labour force participation.

- Create a new database using "labourforce.xlsx"
- "inlf" binary variable =1 if married woman in labour force in 1975.

hours	hours worked, 1975
kidslt6	# kids < 6 years
kidsge6	# kids 6-18
age	woman's age in yrs
educ	years of schooling
wage	estimated wage from earns., hours
repwage	reported wage at interview in 1976
hushrs	hours worked by husband, 1975
husage	husband's age
huseduc	husband's years of schooling
huswage	husband's hourly wage, 1975
faminc	family income, 1975
mtr	fed. marginal tax rate facing woman
motheduc	mother's years of schooling
fatheduc	father's years of schooling
unem	unem. rate in county of resid.
city	=1 if live in city
exper	actual labor mkt exper

Answering the following questions:

- Estimate models using two alternative methods and compare the results (create a batch file).
- What is the effect of age/educ/experience/having kids on the probability of being in the labour force? What difference do you find between the two methods used?
- Allow for diminishing marginal returns to experience. What are your findings?
- Build a more general model, including additional covariates. Which ones are significant? How could you reduce the number of variables?
- Using batch code, sequentially eliminate variables based on their significance (conduct backwards-elimination). What other model selection methods could you use? Advantages/disadvantages?
- Classification: Hold back 200 observations, predict the labour force participation for the hold-back sample. What proportion are correctly classified? Build a model that achieves the highest classification rate.