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Theory of Reduction References

Core References for Lecture 4:

Hendry (2009)* – Through the Looking Glass

Hendry (2017)* – Deciding between alternative approaches in
macroeconomics

Doornik (2009) – Autometrics

Pretis, Reade, and Sucarrat (2016) – GETS in R

Hendry (1995) Dynamic Econometrics (as overview)

Hendry and Doornik (2014) (as overview)
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Motivation

“Even if one wants to test an economic hypothesis as to whether some
effect is present, partial inference cannot be conducted alone, unless

one is sure about the complete absence of all contaminating
influences.”

Hendry (2009)
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Introduction

Economies high dimensional, interdependent, heterogeneous, and
evolving: comprehensive specification of all events is impossible.

Data generation process (DGP):
economic mechanism plus measurement system.
Local DGP (LDGP) is for set of variables under analysis.

Models reflect LDGP – not facsimiles:
designed to satisfy selection criteria.
Aggregation over time, space, commodities, agents, endowments,
essential but precludes claim to ‘truth’.

Only congruence is on offer in economics: congruent models match
LDGP in all measured attributes.

‘True’ models in class of congruent models.

 Congruence is testable: necessary conditions for structure.

Pretis (Oxford) 4: Model Evaluation Michaelmas 2017 4 / 63



Empirical models

Experimental outputs caused by inputs:

yt = f (zt) + νt
[output] [input] [perturbation]

(1)

yt observed when zt input; f (·) maps inputs to outputs.
νt is small, random perturbation.
‘Same’ outputs repeating experiments at same inputs.

In an econometric model, however:

yt = g (zt) + εt
[observed] [explanation] [remainder]

(2)

yt decomposed into two components:
g (zt) (bit explained) and εt (unexplained).
Always feasible even if yt does not depend on g (zt).
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Model design

In econometrics:

εt = yt − g (zt) (3)

Thus, models can be designed by selection of zt.

Design criteria must be analyzed:
will lead to notion of congruent model.

Successive congruent models must explain earlier:
concept of encompassing – whereby progress achieved.

Will repeatedly use:
P(a,b) = P(a | b)P(b)
Base order on: time, theory and institutional knowledge.
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Data generating process

All random variables in economy over t = 1, . . . T :
denoted {ut} with U1

T = (u1, . . . , uT )
Defined on probability space (Ω,F, P).

DGP is joint data density function DU (·):

DU

(
U1
T | U0,ψ1

T

)
with ψ1

T ∈ Ψ ⊆ Rk, (4)

ψ1
T ∈ Ψ ⊆ Rk is k× 1 parameter in space Ψ;

ψ1
T must not depend on F;

U0 are initial conditions.

U1
T unmanageably large: must reduce.

From DGP through LDGP & GUM to selected model arises by
sequence of reductions organized into twelve stages: see Hendry
(1994) and Hendry (2009).
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Twelve stages from DGP to
specific GUM

From DGP to LDGP:
1 Aggregation
2 Data transformations
3 Data partition
4 Marginalizing
5 Sequential factorization
6 Parameters of interest

Approximating the LDGP:
7 Lag truncation
8 Parameter constancy and invariance
9 Functional form (linearity)

Formulating a specific GUM:
10 Mapping to non-integrated data
11 Conditional factorization
12 Simultaneity
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Aggregation & data transformation

1-1 mapping of U1
T to new data set W1

T where U1
T ↔W1

T .

DGP of U1
T , and so of W1

T , characterized by joint density:

DU

(
U1
T | U0,ψ1

T

)
= DW

(
W1
T | W0,φ1

T

)
(5)

where ψ1
T ∈ Ψ and φ1

T ∈ Φ.

Transformation from U to W affects parameter space
so Ψ transformed into Φ.
But W1

T contain aggregates of interest.

Key to all reductions:

impact on parameters – ψ1
T versus φ1

T .
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Key theorem

Transform joint probabilities to a product:

P (a, b) = P (a | b)P (b)

= P (b | a)P (a)

Only use one ordering (often time); and use repeatedly!

P (a, [b, c]) = P (a | [b, c])P (b, c)

= P (a | [b, c])P (b | c)P (c)

Allowing for parameters, we write:

P (a, b | ψ) = P (a, b | θ) = P (a | b, θ1)P (b | θ2)

where θ = f(ψ) and θ = (θ1, θ2) ∈ Θ ⊆ Rk.

Crucial issue: does Θ = Θ1 ×Θ2?
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Parameter space restrictions
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Data partition

Partition W1
T into the two sets:

W1
T =

(
X1
T : V1

T

)
(6)

where X1
T is T × n.

Everything desired from the analysis must be learnt from analyzing
X1
T alone:

V1
T must not be essential to inference.

Hidden condition that parameters of their distributions must be
variation free.
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Marginalization

DW

(
W1
T | W0,φ1

T

)
= DV|X

(
V1
T | X1

T , W0,ϕ1
a,T

)
×

DX

(
X1
T | W0,ϕ1

b,T

)
(7)

Eliminate V1
T by discarding conditional density

[DV|X

(
V1
T |X

1
T , W0,ϕ1

a,T

)
in (7)].

Retain marginal density DX

(
X1
T |W0,ϕ1

b,T

)
.

Key is no loss of relevant information:
a cut is required, so that:

(
ϕ1
a,T : ϕ1

b,T

)
∈ Φa ×Φb.

Thus, parameters must be variation free.
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Sequential factorization

Innovation process created by sequentially factorizing X1
T :

DX

(
X1
T | W0,ϕ1

b,T

)
= Dx

(
xT |X

1
T−1, W0,ϕb,T

)
×

DX

(
X1
T−1|W0,ϕ1

b,T−1

)
... (8)

LDGP =

T∏
t=1

Dx

(
xt | X

1
t−1, W0,ϕb,t

)

Creates mean innovation error process: εt = xt − E
[
xt|X

1
t−1

]
.

Can treat sequential densities ‘as if’ independent:
allows laws of large numbers, central limit theorems etc.
as E

[
εt|X

1
t−1

]
= 0. (implicitly assume Et[·] = E[·]).
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Granger non-causality

Conditional, sequential distribution of {xt}
must not depend on V1

t−1 (Granger non-causality):

Dx

(
xt | V

1
t−1, X1

t−1, W0,φb,t
)
= Dx

(
xt | X

1
t−1, W0,φ∗b,t

)
(9)

If so:
T∏
t=1

Dx

(
xt | X

1
t−1, W0,φ∗b,t

)
(10)

from (9) is LDGP for {xt} with φ∗b,t = ϕb,t
so (9) coincides with last line of (8) above.

LDGP well defined as a reduction of DGP, but may be
high-dimensional, complicated, non-linear, & evolving.
Knowledge of LDGP is best that can be achieved in space of
{xt}–target for model selection.

Pretis (Oxford) 4: Model Evaluation Michaelmas 2017 17 / 63



Parameters of interest

Denoted µ ∈M.
Should be:

identifiable,

constant, and

invariant to relevant class of interventions.

Requires that µ = f(φ1
T ) from (5).

Guides choice of:

data to analyze: X1
T ;

data transformations: h(xt);

form of model: g[h(X1
T )] = εt.
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Approximate LDGP: Lag truncation

Fix extent of history of X1
t−1 in (8) at s earlier periods:

Dx

(
xt | X

1
t−1, W0,ϕb,t

)
= Dx

(
xt | X

t−s
t−1 , W0,ϕb,t

)
(11)

Obvious checks on validity of such a reduction are whether longer lags
matter, or error remains an innovation:
key criterion is impact on {ϕb,t}.
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Parameter constancy

The parameters in question are those that characterize the distribution
in (11).

{ϕb,t} may have different elements for different times:

{ϕb,t} = (ϕb,1,ϕb,2 · · ·ϕb,T−1,ϕb,T ) (12)

Constancy entails that {ϕb,t} depends on a smaller set of parameters
that are constant, at least within regimes.
Complete parameter constancy is:

ϕb,t = λ0 ∈ Λ0 ∀t. (13)

E.g.: yt = ρtzt+εt where ρt = ρt−1+ηt =⇒ ρt = ρ0+
∑t
i=1 ηi

Most misunderstood, and one of least analyzed, concepts
not improved by ‘random parameters’;
not the same as invariance;
and non-constancy not entailed by forecast failure.
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Invariance

Invariance is under extensions of the information set:
1 over time: if extend data series, parameters stay the same;
2 across regimes: if change input variable, relation to output

variable is unchanged and;
3 new sources: if add additional variables to the analysis,

parameters are unaltered.

All three are necessary conditions, and are easily testable:
1 test for parameter constancy at end of sample;
2 change a regressor and test parameter constancy;
3 add potential candidate variables and test they are irrelevant.
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Functional form

Map xt into x∗t = h (xt).

Denote resulting data by X∗.

Assume that x∗t makes Dx∗ (·) approximately normal and
homoscedastic, Nn [ηt, Υ], with no loss of information:

Dx

(
xt | X

t−s
t−1 , W0,λ0

)
= Dx∗

(
x∗t | (X

∗) t−st−1 , W0,λ
)

(14)

Intimate connection between functional form
and parameter constancy.

Drop ∗ notation for simplicity, so xt denotes after any relevant
transformations.
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Linearity

For implementation, must specify precise functional form:
e.g., linear model for Dx

(
xt | X

t−s
t−1 , W0,λ

)
:

xt =

s∑
j=1

Ajxt−j + εt (15)

Express more generally by Γ (L)xt = εt where:

Γ (L) =

s∑
j=0

ΓjL
j;

Γ (L) is a polynomial matrix of order s in lag operator L where
Γ0 = In.

Underpins VAR models as the GUM.
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Mapping to I(0)

Most economic time series are non-stationary.
Key aspect is unit root (integrated data): denoted I(1).
Reduction to I(0) ensures conventional inferences valid
but many inferences valid even if I(0) reduction not enforced.

Importantly holds for most diagnostic tests
(not heteroscedasticity however).

Mapping to I(0) also helps interpret outcomes
and reduces dimensionality of parameterization.
Two possible reductions: differencing and cointegration:

∆xt = xt − xt−1 always removes unit root;

β′xt sometimes does so as well.

Then both are I(0), and conventional inference applies.
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Conditional factorization

Factorize xt into sets of n1 and n2 variables, n1 + n2 = n:

x′t =
(
y′t : z

′
t

)
, (16)

where yt endogenous and zt non-modelled.

Dx

(
xt | X

t−s
t−1 , W0,λ

)
= Dy|z

(
yt | zt, X

t−s
t−1 , W0, θa

)
×

Dz

(
zt | X

t−s
t−1 , W0, θb

)
(17)

zt weakly exogenous for µ if:
1 µ = f (θa) alone; and
2 (θa, θb) ∈ Θa ×Θb.

Justifies contemporaneous conditioning.
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Gauss–Markov and weak exogeneity

Consequences of failure of weak exogeneity vary from:
– loss of estimation efficiency,
– through to a loss of parameter constancy.

Experimental setting where Gauss–Markov conditions seem satisfied:

y = Zβ + ε with ε ∼ NT

[
0,σ2εI

]
(18)

when Z′ = (z1 . . . zT ) is a T × k matrix, rank(Z) = k, and
ε′ = (ε1 . . . εT ) with:

E[y | Z] = Zβ

hence E[Z′ε] = 0. But:

OLS need not be most efficient unbiased estimator of β.
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Counter example

Explicit weak exogeneity condition required on Z:
must preclude β being learned from marginal distribution.
Suppose that marginal equals:

zt = β + νt with νt ∼ Nk [0, Ων] (19)

allows sample mean z̄ of z to be an unbiased estimator:

E[z̄] = β, (20)

V[z̄] = T−1Ων, (21)

so z̄ can dominate β̂, possibly dramatically if Ων is tiny compared to
σ2ε(Z

′Z)−1.
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Testing weak exogeneity

Cointegrated systems allow testing of one aspect of weak exogeneity:

equilibrium-correction mechanisms which cross-link equations
violate long-run weak exogeneity;also shows weak exogeneity
cannot necessarily be obtained merely by choosing ‘parameters
of interest’.

The presence of a disequilibrium term in more than one equation
is testable.

Structural breaks allow tests for super exogeneity and the Lucas
(1976) critique: see e.g. Engle and Hendry (1993).

When conditional models are constant despite data moments
changing, there is evidence of super exogeneity for that model’s
parameters: automatic test in Hendry and Santos (2010).
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Super exogeneity

Sequentially factorize DGP of n-dimensional {xt}:

T∏
t=1

Dx (xt | Xt−1, θ) =

T∏
t=1

Dy|z (yt | zt, Xt−1,φ1)Dz (zt | Xt−1,φ2)

(22)
where xt = (y′t : z

′
t) and φ = (φ′1 : φ

′
2)
′ = f (θ) ∈ Rk.

If parameters of y and z processes variation free –
zt weakly exogenous for parameters of interest ψ = h (φ1):
does not rule out that φ1 may change if φ2 is changed.

Super exogeneity adds parameter invariance in conditional:

∂φ1

∂φ′2
= 0.

Pretis (Oxford) 4: Model Evaluation Michaelmas 2017 31 / 63



Super Exogeneity Example

If Dx (·) is multivariate normal:(
yt
zt

)
∼ INn

[(
µ1,t
µ2,t

)
,

(
σ11,t σ′12,t
σ12,t σ22,t

)]
(23)

µ1,t and µ2,t are functions of Xt−1.
Suppose economic theory suggests that µ1,t = βµ2,t
β is primary parameter of interest.

Cond. Model: E[yt|zt] = µ1,t + σ12,tσ
−1
22,t(zt − µ2,t)

Cond. Var.: V[yt|zt] = σ11,t − σ
′
12,tσ

−1
22,tσ12,t = ω

2
t

re-write cond. model as:

E[yt|zt] = βµ2,t + σ12,tσ
−1
22,tzt − σ12,tσ

−1
22,tµ2,t

when is zt super exogenous for parameters (β,ω2
t)?
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Super Exogeneity Example cont’d.

Further re-write cond. model:

E[yt|zt] = βµ2,t + σ12,tσ
−1
22,tzt − σ12,tσ

−1
22,tµ2,t

= (β− σ12,tσ
−1
22,t)µ2,t + σ12,tσ

−1
22,tzt

= γ1,t + γ2,tzt

Econometric model:

yt = β0 + βzt + εt

For zt to be weakly exogenous:

β = σ12σ
−1
22 ∀t then µ2,t does not enter conditional model.

For zt to be super exogenous additionally need:

γ2,t = γ2∀t
ω2
t = ω

2∀t
(γ1,γ2,ω2) invariant to changes in marginal (µ2,t,σ22,t).
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Regression models

Key implication: γ1,t depends on µ2,t when β 6= σ12σ−1
22 = γ2,t.

Then changes in marginal reflected in conditional.

requires β = γ2, which is testable if µ2,t shifts.
If γ2 unaffected by shifts in µ2,t, then zt super exogenous.

Note: Automatic test using indicators from marginal tested for
significance in conditional.
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Identification

Three attributes:

‘uniqueness’;

‘corresponds to desired entity’;

‘satisfies the assumed interpretation’.

Consider regression of quantity on price
and want to ‘identify as demand equation’:

1 unique function of data second moments;
2 but need not correspond to underlying demand behaviour;
3 and may be incorrectly interpreted–really supply schedule.

Uniqueness is often the sense intended in econometrics.
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Simultaneity

Simultaneous representation is a reduction.

Byt = Czt + εt where εt ∼ INn1
[0, Σε] (24)

so actual DGP is:

yt = Πzt + wt where wt ∼ INn1
[0, Ωw] (25)

with:
BΠ − C = 0 (26)

(26) may entail restrictions on Π, so is a testable reduction.
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Derived model

GUM: A (L)h (y)t = B (L) g (z)t + εt (27)

where εt ãpp Nn1
[0, Σε].

Notice the many design steps in reaching (27).

εt is a derived and not an autonomous process:

εt = A (L)h (y)t − B (L) g (z)t (28)

Designed by choices made in reduction.

Crucial insight: model changes as reductions are altered.

Parameters of model are functions of φ1
T in (5):

(A(·) B(·)) = f(φ1
T ) alter as φ1

T changes.

Test empirical model against LDGP, as represented by data properties.
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Econometric concepts I

Measures of no information loss if correct

1 Aggregation: no loss of information on marginalizing wrt
disaggregates if retain sufficient statistics for µ;

2 Transformations: no associated reduction, but introduce µ, and
need for parameters to be invariant and identifiable;

3 Data partition: which variables to include/omit –
fundamental to success of empirical modelling;

4 Marginalizing wrt vt without loss, if X1
T sufficient for µ

marginalizing wrt V1
t−1 without loss,

if Granger non-causality for xt and a cut;
5 Sequential factorization:

no loss if εt an innovation relative to X1
t−1
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Econometric concepts II

6 LDGP: reduction of DGP for relevant variables, nested within it;
properties explained by reduction;

7 Lag truncation: no loss if εt remains an innovation;
8 Parameter constancy and invariance:

constancy across interventions on marginal process;
9 Functional form: no reduction when two densities in (14) are

equal
10 Integrated data:

reduce to I(0) by cointegration and differencing
Conventional inference and more parsimonious;

11 Conditional factorization: eliminate marginal process
No loss of information if zt weakly exogenous for µ;

12 Simultaneity: parsimoniously capture joint dependence.
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Model design

13 Knowledge of DGP entails knowledge of all reductions
thereof
If one model entails knowledge of others, then that model is said
to encompass them

Unlike symptomatology approach testing for:
autocorrelation, heteroscedasticity, omitted variables, non-constancy
etc. then ‘correcting’ them.

Invalid approach as no unique alternative to any null;
successive outcomes can contradict;

no obvious termination point–
stopping after first ‘non-rejection’ is disastrous, and
no account of selection process.
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Explicit model design

Commence from ‘good’ approximation to LDGP,
which embeds available economic theory,
and institutional knowledge,
checked for congruence by mis-specification tests.

Mimic reduction theory in practical research, to minimize losses
due to reductions imposed

Based on notions of congruence and encompassing:
– former close to ‘well specified’,
– latter entails explaining the results of other models.

We will address how to select model of LDGP from initial general
unrestricted specification
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Taxonomy of evaluation information

Partition own data X1
T into three information sets:

1 past data;
2 present data;
3 future data;

X1
T =

(
X1
t−1 : xt : X

t+1
T

)
(29)

4 Theory information: source of µ, and creative stimulus;
5 Measurement information: price index theory, identities, data

accuracy; and:
6 Rival models (encompass congruent models)

Leads to six main model evaluation criteria.
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Model evaluation criteria

1 homoscedastic innovation εt;
2 weakly exogenous zt for µ;
3 constant, invariant µ;
4 theory consistent, identifiable structures;
5 data-admissible formulations on accurate observations;
6 encompass rival models.

Exhaustive nulls to test; but many alternatives.

Models which satisfy [1] & [2] are well specified on available
information.
Models which satisfy [1] & [2] & [3] are (empirically) congruent.

Admissible, theory-consistent, encompassing, congruent model
satisfies all six criteria.
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Principles of Gets model selection

Define a starting model: general unrestricted model (GUM)
Designed to be congruent (diagnostic testing) and relevant,
Tests of reductions with approximately correct distribution,
Reduction can maintain congruence (or lack thereof),
Reduction up to a predefined significance level (backtesting w.r.t.
GUM: acceptable information loss).

Model selection is an iterative search procedure, need to follow several
paths:

multiple path search, or

tree search.
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Ingredients for Gets

t-tests (single variable removal).

F-tests (tests of variables removed from the GUM, encompassing
aka backtesting).

F-tests (pruning to faster search).
diagnostic tests

ARCH (Engle 1982)
Serial correlation (Godfrey 1978, Harvey 1981)
Heteroscedasticity (White 1980)
Normality (Jarque and Bera 1980; Doornik and Hansen 1994,
2008)
Chow (Chow 1960 in-sample stability test)*

information criterion (tiebreaker)

stability tests (out of sample, optionally)
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Automatic Gets model selection

Model selection is an iterative search procedure
manual search can follow a few paths: slow and tedious,
computer automated search can follow all paths,
Well, not all. There are 2k models, so need a strategy.
k = 100 at 109/sec: 106× age of universe.

General-to-specific model selection (Gets, ‘Hendry’ or ‘LSE’
methodology) largely driven by David Hendry (DHSY, PcGive,
Alchemy, Dynamic Econometrics, ...)
Lively debate.

Automated Gets initiated by Hoover and Perez (1999), Hendry
and Krolzig (2005) (PcGets: 2nd generation, theoretical
properties, bias correction).
Study model selection through simulation – improves debate.

Autometrics & Getsm improve on PcGets, extended beyond
standard regression models.
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Features of GETS algorithms

Hoover-Perez (1999):
1 General unrestricted model
2 Multiple path search
3 Encompassing test
4 Diagnostic testing
5 Tiebreaker

Hendry and Krolzig (1999), PcGets (2001):
1 Add presearch
2 Extend multiple-path search
3 Add iteration
4 No out-of-sample testing (Lunch and Vital-Ahuja, 1998)
5 Change treatment for Invalid GUM

Autometrics (2009), Getsm (2017):
1 Reduce role of presearch
2 Change search path algorithm: tree search
3 Extend scope: separation of model and algorithm
4 Increase efficiency
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Features of Autometrics

Autometrics & Getsm implement underlying principle of
general-to-specific model selection (‘Hendry methodology’).

Autometrics & Getsm

likelihood-based
searches the whole model space:

tree search ensures that no model is estimated twice
irrelevant paths can be cut-off efficiently
F-tests are used to speed-up search

implements backtracking on diagnostics: only test from terminal
candidates, then backtrack if necessary

backtesting w.r.t. GUM 0 (the initial GUM after presearches)
removes need for encompassing of candidate models

relevant terminal candidates remembered in iterated search

implements block search for N > T
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Tree search

Search follows branches till no insignificant variables;
tests for congruence and parsimonious encompassing;

backtracks if either fails, till first non-rejection found.
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Interpretation

Path search gives impression of ‘repeated testing’.
Confused with selecting from 2N possible models
(here 21000 = 10301, an impossible task).
We are selecting variables, not models, & only N variables.

But selection matters, as only retain ‘significant’ outcomes.
Sampling variation also entails retain irrelevant, or miss relevant, by
chance near selection margin.

Conditional on selecting, estimates biased away from origin: but can
bias correct as know cα.

Small efficiency cost under null for examining many candidate
regressors, even N >> T .

Almost as good as commencing from LDGP at same cα.
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DGP with correlated regressors

DGP –

yt=0.5yt−1 + 0.8x1,t + 0.8x2,t + ut, ut ∼ IN[0, 1],

xt=vt, vt ∼ IN

0,

1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1

 ,

Model –
Xfixed = {1}
Xfree = {yt−1, x1t, x2t, x3t, x4t}
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Four selection methods

Infeasible Lasso (k=3) Backward elimination at 5% Autometrics at 5% Step-wise at 5% 
-0.5 0.0 0.5 1.0

0.1

0.2

0.3

0.4

0.5 Gauge

←ρ→

Infeasible Lasso (k=3) Backward elimination at 5% Autometrics at 5% Step-wise at 5% 
-0.5 0.0 0.5 1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Potency

←ρ→

gauge: fraction of irrelevant variables (x3t, x4t) in the final model
potency: fraction of relevant variables (yt−1, x1t, x2t) in the final
model.
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Role of mis-specification testing

Diagnostic checking: subject every estimated model to a battery of
diagnostic tests (normality, residual correlation, residual ARCH,
in-sample Chow, out-of-sample Chow,...). If a test fails the reduction is
rejected and the next model in line is considered.

Under null of congruent GUM, the figure below compares ‘gauges’ for
Autometrics with diagnostic checking on vs. off:

yt =
∑N

i=1
βizi,t + εt for εt ∼ IN[0,σ2ε] (30)

T = 100, n = 1, . . . , 10 = N;βk = 0 for k > n; R2 = 0.9.

Gauge is close to α if diagnostic tests not checked.

Gauge is larger than α with diagnostics on, when checking to ensure
a congruent reduction.

Difference seems due to retaining insignificant irrelevant variables
which proxy chance departures from null of mis-specification tests.
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Gauges with diagnostic tests off & on

Autometrics (diagnostics) 10% 
Autometrics (diagnostics) 5% 
Autometrics (diagnostics) 1% 
Autometrics (no diagnostics) 10% 
Autometrics (no diagnostics) 5% 
Autometrics (no diagnostics) 1% 

0 1 2 3 4 5 6 7 8 9 10

0.02

0.04

0.06

0.08

0.10

1%

10%

n →

5%

Gauge for Autometrics with and without diagnostics

Autometrics (diagnostics) 10% 
Autometrics (diagnostics) 5% 
Autometrics (diagnostics) 1% 
Autometrics (no diagnostics) 10% 
Autometrics (no diagnostics) 5% 
Autometrics (no diagnostics) 1% 
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Selection effects on test distributions
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General More Variables than Obs.

Motivated by Indicator Saturation Block-Partitioning.

More Variables Than Observations: Block Partitioning

Split variables into blocks A, B, C
A ∪ B select→ G1

A ∪ C select→ G2

B ∪ C select→ G3

⇒ G1 ∪ G2 ∪ G3 select→ Final Model
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General More Variables than Obs.

If also have relevant variables to be retained, and N > T ,
orthogonalize them with respect to the rest.

As N > T , divide in more sub-blocks, setting α = 1/N.

Basic model retains desired sub-set of n variables at every stage, and
only selects over putative irrelevant variables at stringent significance
level:
under the null, has no impact on estimated coefficients of
relevant variables, or their distributions.

Thus, almost costless to check even large numbers of candidate
variables:
huge benefits if initial specification incorrect but enlarged GUM
nests LDGP.
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Simulating Autometrics
on Hoover–Perez

Hoover and Perez (1999) experiments:

HP7y7,t = 0.75y7,t−1 + 1.33x11,t − 0.9975x11,t−1 + 6.44ut R2 = 0.58

HP8y8,t = 0.75y8,t−1 − 0.046x3,t + 0.0345x3,t−1 + 0.073λutR
2 = 0.93

where ut ∼ IN[0, 1]; xi,t−j are US macro data

1) The GUM has 3 DGP variables plus 37 irrelevant.

2) Then consider 141 irrelevant, larger than T = 139.
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Hoover–Perez experiments

N < T : T = 139, 3 relevant and 37 irrelevant variables
Hoover–Perez step-wise Autometrics
HP7 HP8 HP7 HP8 HP7 HP8

1% nominal size
Gauge % 3.0∗ 0.9∗ 0.9 3.1 1.6 1.6

Potency % 94.0 99.9 100.0 53.3 99.2 100.0
DGP found % 24.6 78.0 71.6 22.0 68.3 68.8

∗ Only counting significant terms (but tiebreaker is best-fitting model)

N > T : T = 139, 3 relevant and 141 irrelevant variables
step-wise Autometrics

HP7 HP8 HP7 HP8
0.1% nominal size

Gauge % 0.1 0.7 0.3 0.1
Potency % 99.7 40.3 97.4 100.0
DGP found % 87.4 9.0 82.9 90.2

Large increase in probability of locating DGP relative to α = 0.01
not monotonic in α–so should not select by ‘goodness of fit’
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Selecting by Autometrics

Have now established that there is little loss from using the
path-search algorithms

Gauge is close to selected α for both.

Potency is near theory value for a 1-off test.

Goodness-of-fit is not directly used to select models & no attempt
is made to ‘prove’ that a given set of variables matters, and
‘repeated testing’ is not a concern, but choice of cα affects R2

and n through retention by |t(n)| > cα.

Likelihood estimation in general is feasible (Doornik (2009)).
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Conclusions

Commence with general formulation – general unrestricted model:

yt = β′zt+γ
′wt+

T∑
j=1

δIIS,j1{j=t}+

T−1∑
j=1

δSIS,j1{j6t}+vt t = 1, . . . , T

Embed theory zt
Expand model wt (almost costless if theory correct)

Indicators δt (almost costless under null)
Ensuring valid conditioning – exogeneity

Testable (Weak E., Strong E., Super E.)

Theory Motivation: Reduction from DGP to LDGP to GUM to
Specific
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