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Exogeneity References

Core References for Lecture 3:

Engle, Hendry, and Richard (1983)* – ‘Exogeneity’ (EHR)

Ericsson, Hendry, and Mizon (1998)* – Exogeneity, Cointegration,
and Policy Analysis

Hendry and Santos (2010)* – Automatic Test for Super
Exogeneity

Engle and Hendry (1993) – Super Exogeneity

Hendry (2017) – Granger (Non-)Causality
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Exogeneity

Exogeneity: valid conditioning.

Weak Exogeneity: conditions to study conditional model alone
(relative to parameters of interest)

Strong Exogeneity: feedback and conditional
projections/forecasts.

Super Exogeneity: invariance, policy analysis.

Conditions of variables in/out of the model. Beyond
pre-determinedness and ‘strict exogeneity’ which refer to properties of
unobserved error term.

Pretis (Oxford) 3: Exogeneity Michaelmas 2017 3 / 59



EHR: Exogeneity (1983)

Let xt ∈ Rn denote a vector of observable random variables
generated at time t with observations (t = 1, . . . , T).

X1
t = (x1, . . . , xt)

′ (1)

is a t× n matrix. Denote X0 the matrix of initial conditions.
Information at time t is:

Xt−1 =

[
X0

X1
t−1

]
(2)

Process generating T observations is assumed continous and
represented by the joint density function D(X1

T |X0, θ) where θ in the
interior of Θ is a vector of unknown parameters.
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Joint Density

The vector xt is partitioned into

xt =

(
yt
zt

)
,yt ∈ Rp, zt ∈ Rq,p+ q = n (3)

Factorize the joint density (as using P(a,b) = P(a | b)P(b)) as:

D(X1
T |X0, θ) =

T∏
t=1

D(xt|Xt−1, θ) (4)
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Weak Exogeneity

Parameters of Interest ψ: may not be interested in all parameters θ.
Instead interested in ψ→ f(θ). Consider therefore a one-to-one
transformation:

h : Θ→ Λ; θ→ λ = h(θ) (5)

and partition λ into λ1, λ2.

Let Λi denote the set of admissible values of λi. Question is whether
parameters of interest are functions of λi alone, whether there exists a
function φ such that:

φ : Λ1 → Ψ; λ1 → ψ = φ(λ1) (6)
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Weak Exogeneity

Partition the joint density into a conditional and marginal (no loss of
information):

D(xt|Xt−1, λ) = D(yt|zt,Xt−1, λ1)D(zt|Xt−1, λ2) (7)

zt is weakly exogenous (WE) over the sample period for parameters
of interest ψ if and only if there exists a re-parametrisation with
λ = (λ1, λ2) such that:

ψ is a function of λ1 alone.

λ1 and λ2 are variation free.

If zt is WE, then can study conditional density alone to learn about ψ
without having to consider marginal.
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Maximum Likelihood

Likelihood framework (estimation) – Joint Likelihood (given initial
conditions) denoted as:

L0(λ;X1
T ) = L

0
1(λ1;X

1
T )L

0
2(λ2;X

1
T ) (8)

partitioned into conditional and marginal likelihood:

L01(λ1;X
1
T ) =

T∏
t=1

D(yt|zt,Xt−1, λ1) (9)

L02(λ2;X
1
T ) =

T∏
t=1

D(zt|Xt−1, λ2) (10)

where under weak exogeneity estimates of parameter of interest ψ
can be obtained by considering the conditional likelihood L01 alone.
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Strong Exogeneity

Granger Non-Causality:

Y1t−1 does not Granger cause zt with respect to Xt−1 if and only if
marginal density:

D(zt|Xt−1, θ) = D(zt|Zt−1, Y0, θ) (11)

→ past values of yt do not enter the marginal density of zt.

If this condition holds over the sample period, then the joint density
D(X1

T |X0, θ) factorises as:

D(X1
T |X0, θ) =

[
T∏
t=1

D(yt|zt,Xt−1, θ)

][
T∏
t=1

D(zt|Zt−1, Y0, θ)

]
(12)
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Strong Exogeneity

Strong Exogeneity:

zt is strongly exogenous over the sample period for ψ if and only if it is
weakly exogenous for ψ and:

y does not Granger cause z

If zt is strongly exogenous: we can conduct inference on parameters
of interest in conditional model alone and create conditional forecasts
on zt (no feedback of yt onto zt).
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Super Exogeneity

Even if the parameters of the conditional density D(yt|zt,Xt−1, λ1)
and marginal density D(zt|Xt−1, λ2) are variation free, λ1 may still
change as λ2 alters.

Conditional model is structurally invariant if all its parameters λ1
are invariant for any changes in the distribution of the conditioning
variables. (Denote these changes as interventions C2).
E.g. λ1,t = κλ2,t with κ unknown, variation free but not invariant.

zt is super exogenous for ψ if zt is weakly exogenous for ψ and the
conditional model D(yt|zt,Xt−1, λ1) is structurally invariant.

Engle and Hendry (1983) on Super Exogeneity:

Weak Exogeneity
Parameter constancy: ψt = ψ (or function of constant
parameters)
∂λ1
∂λ2

= 0 ∀λ2 ∈ C2
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Exogeneity & Predeterminedness

Relating to “Endogeneity”:

Commonly used definitions of exogeneity refer to properties of
variables relative to an unobserved error term εt in regression.

Definition:

zt is predetermined if and only if: zt||εt+i ∀i > 0

zt is strictly exogenous if and only if: zt||εt+i ∀i
where || denotes that processes are independent.

Neither predeterminedness nor strict exogeneity are sufficient (or
necessary) to fulfil weak, strong, or super-exogeneity required for
conditional modelling.
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Example I

Exogeneity in Bivariate Normal:[
yt
zt

]
∼ IN(µ,Ω), µ = µi,Ω = ωij, i, j = 1, 2 (13)

Conditional distribution yt|zt:

yt|zt ∼ IN(α+ βzt,σ
2) (14)

where β = ω12/ω22 and α = µ1 − βµ2 and σ2 = ω11 −ω
2
12/ω22

Denote the error terms:

u1,t = yt − E(yt|zt) and u2,t = yt − E(yt) (15)

v1,t = zt − E(zt|yt) and v2,t = zt − E(zt) (16)
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Example I

Conditional model:
yt = α+ βzt + u1,t (17)

Marginal model:
zt = µ2 + v2,t (18)

where u1,t ∼ IN(0,σ2) and v2,t ∼ IN(0,ω22)

zt is weakly exogenous for parameters in conditional model
(α,β,σ2) as the parameters in the conditional and marginal
models are variation free.

Arbitrary choices of µ2,ω22 do not constrain the parameters in
the conditional model.
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Example I

Consider alternative conditioning:

zt = γ+ δyt + v1,t (19)

and marginal:
yt = µ1 + u2,t (20)

where δ = ω12/ω11, γ = µ2 − δµ2, and
V(v1,t) = τ2 = ω22 −ω

2
21/ω11.

Now yt is weakly exogenous for δ,γ, τ2.

Weak exogeneity is defined relative to parameters of interest (can
they be obtained from the conditional model alone).
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Predeterminedness & Weak Exogeneity

Predeterminedness does not imply WE or vice versa:

Regardless of parameter of interest, by construction yt is
predetermined in conditional model of zt (and vice versa).
Cov(zt,u1,t) = 0:

Cov(zt,u1,t) = Cov(zt,yt − E[yt|zt])

= Cov(zt,yt) + Cov(zt,−E[yt|zt])

= ω12 + Cov(zt,−µ1 − β(zt − µ2))

= ω12 − βVar(zt)

= ω12 −
ω12

ω22
ω22

But: e.g. when γ = µ2 − δµ2 is the parameter of interest in cond.
model of yt, then zt is predetermined, but not weakly exogenous.

Here weak-exogeneity cannot be tested. Not the case in more
complex models (particularly useful in cointegrated VARs).
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Example II

Exogeneity in a Cobweb Model (control rule to control y):

yt = ztβ+ εy,t (21)

zt = zt−1δ1 + yt−1δ2 + εz,t (22)

εt =

[
εy,t
εz,t

]
∼ IN (0,Σ) , Σ =

(
σyy σyz
σyz σzz

)
(23)
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Example II

Model is a restricted factorisation of a VAR of yt, zt, where the
unrestricted reduced form is given by:

yt = yt−1βδ2 + zt−1βδ1 + vt (24)

zt = zt−1δ1 + yt−1δ2 + εz,t (25)

with:[
vt
εz,t

]
∼ IN (0,Ω) , Ω =

(
σyy + 2βσyz + β

2σzz σyz + βσzz
σyz + βσzz σzz

)
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Example II

The VAR can be partitioned into a conditional and a marginal model:

yt = ztb+ yt−1a1 + zt−1a2 + ut (26)

zt = zt−1δ1 + yt−1δ2 + εz,t (27)

where ut ∼ IN(0,σ2).

The coefficients in (26) map to cobweb model (21) such that

b = β+
σyz
σzz

ai = δi
σyz
σzz

where i = [1, 2].

If σyz = 0, then zt is WE for the parameter of interest β.

Pretis (Oxford) 3: Exogeneity Michaelmas 2017 19 / 59



Example II: Predeterminedness

If σyz = 0:

z is ‘predetermined’ in (21) and z is also weakly exogenous for β

However, if σyz 6= 0 then:

z is not predetermined in model (21) as zt is non-orthogonal to
the error εy,t
while z it is predetermined in the conditional model (26), however,
then z not weakly exogenous for β which cannot be recovered
from the conditional model alone.

Pre-determinedness does not imply weak-exogeneity and valid
conditioning.

Pretis (Oxford) 3: Exogeneity Michaelmas 2017 20 / 59



Example III

Exogeneity in a Cointegrated VAR

yt =

s∑
j=1

Ajyt−j + µ+ εt (28)

εt ∼ IN (0,Σ) , with Σ =

(
Σxx Σxz
Σxz Σzz

)
(29)

(30)

Consider s = 2 and assume reduced rank(Π) = 1 where (Π = αβ ′)

∆yt = αβ
′yt−1 + Γ∆yt−1 + µ+ εt (31)

where yt = (xt, zt)
′, εt = (εx,t, εz,t)

′ and ∆yt = yt − yt−1.
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Example III

Can write out the full CVAR system as:[
∆xt
∆zt

]
=

[
α1

α2

] [
β1 β2

] [ xt−1

zt−1

]
+

[
Γ11 Γ12
Γ21 Γ22

] [
∆xt−1

∆zt−1

]
+

[
µx
µz

]
+

[
εx,t
εz,t

]

Cointegrating vector (equilibrium relationship) given by:

β ′yt = β1xt + β2zt (32)
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Example III: Re-write VAR

Re-write VAR as conditional and marginal:

From the joint CVAR model definemx,t and mz,t as follows:

mx,t = µx + α1β
′yt−1 + Γ1∆yt−1 (33)

mz,t = µz + α2β
′yt−1 + Γ2∆yt−1 (34)

Using the multivariate normal distribution of εt, the conditional
expectation of ∆xt given ∆zt,yt−1 is equal to:

E[∆xt|∆zt,yt−1] = mx,t +D(∆zt −mz,t) (35)

where D = ΣxzΣ
−1
zz . Substituting formx,t,mz,t in (35) and collecting

terms yields the resulting conditional model.
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Example III: Cond. & Marginal

Conditional Model:

∆xt = (µx −Dµz) + (α1 −Dα2)β
′yt−1 +D∆zt + (Γ1 −DΓ2)∆yt−1 + vx,t

= (µx −Dµz) + β1(α1 −Dα2)xt−1 + β2(α1 −Dα2)zt−1 +D∆zt +

(Γ11 −DΓ21)∆xt−1 + (Γ12 −DΓ22)∆zt−1 + vx,t

= γ0 + γ1xt−1 + γ2zt−1 + γ3∆zt + γ4∆xt−1 + γ5∆zt−1 + vx,t

Where D = ΣxzΣ
−1
zz , Γi = (Γi1, Γi2), and vx,t = εx,t −Dεz,t.

Marginal model:

∆zt = µz + α2β
′yt−1 + Γ2∆yt−1 + εz,t

= µz + (α2β1)xt−1 + (α2β2)zt−1 + Γ21∆xt−1 + Γ22∆zt−1 + εz,t

= ψ0 +ψ1xt−1 +ψ2zt−1 +ψ3∆xt−1 +ψ4∆zt−1 + εz,t
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Weak Exogeneity

Weak Exogeneity in the CVAR:

If β (the long-run equilibrium) is the parameter of interest, then direct
test for weak exogeneity is testing αi adjustment coefficients.

zt is weakly exogenous for β if α2 = 0

xt is weakly exogenous for β if α1 = 0

Testable: LR tests, (or bootstrap).

Note: both series cannot be weakly exogenous simultaneously, as
otherwise there is no cointegration.

If Γ are parameters of interest, then weak exogeneity requires
restrictions on covariance matrix Σ.
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Strong Exogeneity

Strong Exogeneity in the CVAR:

xt will not Granger-cause zt if and only if Γ21 = 0 and
(α2β1) = 0.

zt will not Granger-cause xt if and only if Γ12 = 0 and
(α1β2) = 0.

If β1,β2 6= 0 then granger non-causality is a sufficient condition for
strong exogeneity (which add. requires weak exogeneity α = 0) in the
1-lag, rank=1, CVAR example.

Consider two cointegrating vectors?
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Super Exogeneity

Super Exogeneity in the CVAR

Engle and Hendry (1993) on Super Exogeneity:

Weak Exogeneity (testable on α)

Parameter constancy (testable: recursive or breaks)

Parameters in cond. invariant to shifts in marginal
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Testing Super Exogeneity

Here: focus on testing invariance to changes/shifts in marginal
density.

Shock in marginal process – does this change how variable reacts in
conditional model?

Example: Policy intervention in marginal model – increase taxes,
emission standards etc. Response in conditional: does variable
respond the way we expect given the estimated model?

→ Makes the ‘Lucas Critique’ testable.
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Sup. Exogeneity & Lucas Critique

Lucas (1976) criticised using econometric models for policy analysis:
implementing policy would alter the structure the model was
attempting to capture.

Agents: form model-based expectations about z when making
decisions about y, then λ1 depends on λ2, and λ1 will change if
policy alters λ2.

This may be the case even if weak exogeneity holds.
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Sup. Exogeneity & Lucas Critique

Lucas critique focuses on two model properties:
Parameter constancy and invariance: Super exogeneity provides a
concept to test what Lucas criticised.

Hendry 1988, and Engle and Hendry 1993:

A) Test for constancy of λ1 and λ2. If λ1 is constant, but λ2 is not,
then λ1 is invariant to the interventions that ocurred – and Lucas
critique can not apply.

B) Develop marginal model until its parameters are empirically
constant – model how λ2 varies over time by including dummies,
etc. Then test the significance of these dummies in the
conditional model. Insignificance in conditional model
demonstrates invariance of λ1.

→ empirical presence of super-exogeneity (testable) refutes
Lucas critique in practise.
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Super Exogeneity

Testing Invariance:

Develop marginal model until its parameters are empirically constant –
model how λ2 varies over time by including dummies (known
shocks/interventions).

Then test the significance of these dummies in the conditional model.
Insignificance in conditional model demonstrates invariance of λ1.

Unknown unknowns – detect shocks in marginal (how?) and
subsequently test if they are already accounted for in the parameters
of the conditional.
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Testing super exogeneity

Parameter invariance essential in policy models: else mis-predict
under regime shifts.

Super exogeneity combines parameter invariance with valid
conditioning so crucial for economic policy.

Automatic test in Hendry and Santos (2010) & Castle, Hendry,
Martinez (2016): detect shocks in marginal models, retain all
significant outcomes and test their relevance in conditional model.

No ex ante knowledge of timing or magnitudes of breaks:
need not know DGP of marginal variables.

Test has correct size under null of super exogeneity for a range of
sizes of marginal-model saturation tests. Power to detect
failures of super exogeneity when location shifts in marginal
models:applies equally to models with expectations like
NKPC.
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Implementing the test

First stage is detection of shocks in marginal,
retaining dummies at significance level α1, herem are detected:

zt = π0 +

s∑
j=1

Πjxt−j +

m∑
i=1

ρi,α1
1{t=ti} + v∗2,t (36)

Second stage addsm retained indicators to conditional:

yt = µ0 + β
′zt +

m∑
i=1

τi,α2
1{t=ti} + εt (37)

Conduct F-test for significance of (τ1,α2 . . . τm,α2
) at level α2.

Test has power as significant impulse indicators capture outliers not
explained by regressors.
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A step-indicator saturation test
for invariance

The invariance test involves two stages.

A] IIS and/or SIS is applied to marginal system for all current
conditioning variables zt: significant indicators are recorded.

B] Those indicators then tested for significance in the conditional
equation (yt|zt, · · · )
Retaining s lags of all variables xt = (yt : zt)

′, SIS is applied at
significance level α1 leading to the selection ofm step indicators:

zt = ψ0 +

s∑
i=1

Ψixt−i +

m∑
j=1

ηj,α1
1{t6Tj} + v2,t (38)

where (38) is selected to be congruent. Significant step-indicator
coefficients are denoted ηj,α1

to emphasize dependence on α1.

Simulating Autometrics, Castle, Doornik, Hendry, and Pretis (2015)
show the gauge, g, of SIS in (38) is close to α1; and SIS has potency
for detecting substantive location shifts close to power for known shifts.
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Second stage null rejection frequency
of SIS test for invariance

The m significant step indicators {1{t6j}} are retained in (38) when:

|tη̂i,α1
| > cα1 (39)

when cα1 is the critical value for α1.
Collect the indicators at each t in an m vector dt, then (for s = 1):

yt = γ0 + γ
′
1zt + π

′xt−1 + δ
′dt + εt (40)

where δ =
(
δ′1,α1

. . . δ′m,α1

)′
= 0 under the null, to be tested as an

added-variable set in the conditional equation (40) without selection.
Use the FInv(δ=0)-test, at significance level α2 which rejects when:

FInv(δ=0) > cα2 . (41)
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Monte Carlo

The simulation DGP is:(
yt
zt

)
| xt−1 ∼ IN2

[(
γ1 + ργ2,t
γ2,t

)
,σ22

(
σ−1
22 σ11 + ρ

2θ(t) ρθ(t)
ρθ(t) θ(t)

)]

E[yt|zt, xt−1] = γ1 + ργ2,t +
ρσ22θ(t)
σ22θ(t)

(zt − γ2,t) = γ1 + ρzt

γ2,t = 1+ λ1{t6T1} and θ(t) = 1+ θ1{t6T2} (invariance still holds)

Three different null states need to be investigated:
(a) a constant marginal distribution for zt;
(b) a location shift in that distribution (so λ 6= 0); and
(c) a variance shift (so θ 6= 0).

SIS-based tests at stage 1 should not use too tight an α1 or may find
no indicators, so FInv(δ=0) would have a zero null rejection frequency.
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Outcomes at α1=0.01,
s = 4 in the GUM

Constant marginal process T = 50 T = 100 T = 200
Stage 1 gauge: α1 = 0.01 0.035 0.033 0.044
Stage 2 NRF: α2 = 0.01 0.006 0.009 0.009

Location shift in zt λ = 2 λ = 10
T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

α1 = 0.01
Stage 1 gauge 0.034 0.027 0.043 0.018 0.018 0.035
Stage 1 potency 0.191 0.186 0.205 0.957 0.962 0.965
α2 = 0.01
Stage 2 NRF 0.009 0.010 0.011 0.010 0.009 0.010

Variance shift in zt θ = 2 θ = 10
T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

α1 = 0.01
Stage 1 gauge 0.042 0.051 0.067 0.060 0.083 0.113
Stage 1 potency 0.030 0.030 0.035 0.041 0.043 0.071
α2 = 0.01
Stage 2 NRF 0.006 0.008 0.009 0.006 0.009 0.010
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T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

α1 = 0.01
Stage 1 gauge 0.034 0.027 0.043 0.018 0.018 0.035
Stage 1 potency 0.191 0.186 0.205 0.957 0.962 0.965
α2 = 0.01
Stage 2 NRF 0.009 0.010 0.011 0.010 0.009 0.010

Variance shift in zt θ = 2 θ = 10
T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

α1 = 0.01
Stage 1 gauge 0.042 0.051 0.067 0.060 0.083 0.113
Stage 1 potency 0.030 0.030 0.035 0.041 0.043 0.071
α2 = 0.01
Stage 2 NRF 0.006 0.008 0.009 0.006 0.009 0.010
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Simulating the potencies of the
SIS invariance test

The DGP for violations of invariance (here due to a failure of weak
exogeneity under non-constancy):(

yt
zt

)
∼ IN2

[(
γ1 + ργ2,t
γ2,t

)
,

(
σ11 σ12
σ12 σ22

)]
(42)

so letting σ12/σ22 = β leads to the conditional relation:

E [yt | zt] = γ1 + (ρ− β)γ2,t + βzt (43)

γ2t = λ1{t>T1} (44)

d = λ/
√
σ22 : {1, 2, 2.5, 3, 4},

β : {0.75, 1, 1.5, 1.75} (reducing departure from WE, ρ = 2)

The DGP location shift: Ts = 80− 100.
M = 1, 000 replications at α1 = α2 = 0.01.
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Stage 1 of the SIS-based test
for a location shift

Table 6: Stage 1 gauge and potency for β = 1.

d 1 2 2.5 3 4

Stage 1 gauge: 0.040 0.028 0.026 0.023 0.021
Stage 1 potency: 0.223 0.575 0.737 0.813 0.930

The procedure is over-gauged, but this is not crucial at stage 1.

Potency rises rapidly with d (magnitude of shift).
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Optimal infeasible indicator-based
F-test for a location shift

When correct step indicator is always included in the conditional
model, powers approximate the maximum achievable using α2 = 0.01.

Table 7: Power using a known step indicator.

d : β 0.75 1 1.5 1.75

1 1.00 1.00 0.886 0.270
2 1.00 1.00 1.000 0.768
2.5 1.00 1.00 1.000 0.855
3 1.00 1.00 1.000 0.879
4 1.00 1.00 1.000 0.931

For large magnitudes of d or substantive departures from weak
exogeneity, ρ− β, invariance almost always rejected,
but power falls rapidly when both the location shift magnitude declines
and the weak exogeneity violation disappears.
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Power of the SIS-based test
for a location shift

Table 8: Stage 2 power for a failure of invariance, (for ρ = 2)

d : β 0.75 1 1.5 1.75

1 0.918 0.908 0.567 0.127
2 1.000 1.000 0.994 0.604
2.5 1.000 1.000 0.999 0.744
3 1.000 1.000 1.000 0.821
4 1.000 1.000 0.999 0.912

Power of the SIS test is close to the optimal test power in Table 7,
despite not knowing the number or timing of any shifts.
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Dramatically higher for SIS than IIS

Figure 2
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Applied Example

Exogeneity in Climate Econometrics – see Pretis (2017)

Empirical studies on:

Impacts of climate (temperature changes etc.) onto economic
activity

Impacts of economic activity onto climate

Climate economic system: where each side considers conditional
models.
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Simple Climate-Economic System

One economic variable (et) and one climate variable (ct)

US SO2 Emissions (et) US Temp. (ct)
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êt = 43.65
(11.69)

− 2.15
(1.05)

ct︸ ︷︷ ︸
Econ. cond. on Climate

vs. ĉt = 11.49
(0.17)

− 0.018
(0.008)

et︸ ︷︷ ︸
Climate cond. on Econ.

US SO2 Emiss. × US Temp. 
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Climate and Economy

Climate-Economic System: DGP is Joint Density of yt = (e ′t : c
′
t)

et socio-economic processes

ct climate processes

Data Generating Process (DGP):

DY(Y
1
T |Y0, ζ) =

T∏
t=1

Dy(yt|Yt−1, ζt)

Model:

fY(Y
1
T |Y0, θ) =

T∏
t=1

fy(yt|Yt−1, θ)
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Joint Bivariate System Model: Applied

Joint Model for yt = (et, ct) as a VAR:

yt =

s=2∑
j=1

Ajyt−j+µ+εt εt ∼ IN (0,Σ) , with Σ =

(
Σe Σec
Σec Σc

)

Cointegration Tests for et, ct (US Temp. & US SO2 emissions)

Rank Trace Test Trace Test (Bartlett) Bootstrap Test

0 p<0.001 p<0.001 p<0.001
1 p=0.012 p=0.013 p=0.075

Sample: 1897 - 2005, T=109
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Application

Climate-Economic System as a CVAR :

∆yt = αβ
′yt−1 + Γ∆yt−1 + µ+ εt

[
∆et
∆ct

]
=

[
α1

α2

][
β1 β2

] [ et−1

ct−1

]
+

[
Γ11 Γ12
Γ21 Γ22

] [
∆et−1

∆ct−1

]
+

[
µe
µc

]
+

[
εe,t
εc,t

]

[
∆êt
∆ĉt

]
=

 0.003
(0.005)

−0.008
(0.001)


︸ ︷︷ ︸

α̂

[
1 78.8

(14.27)

]
︸ ︷︷ ︸

β̂′

[
et−1

ct−1

]
+

−0.014
(0.1)

−0.67
(0.36)

−0.02
(0.03)

0.1
(−0.07)


︸ ︷︷ ︸

Γ̂

[
∆et−1

∆ct−1

]
+

−2.07
(4.85)

6.91
(1.31)


︸ ︷︷ ︸

µ̂

T = 109, n = 8, LogLik = −264.69, Far(8, 200) = 2.36[p = 0.02],

χ2norm(4) = 10.06[p = 0.04], Fhet(18, 283) = 0.947[p = 0.52]
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Model Fit

US SO2 Emissions (et) US Temp. (ct)
US Temp. 
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Conditional Models

Simple bi-varate system, however, joint model often difficult to model.
Partition the joint density fy(yt|Yt−1, θ) into conditional and marginal:

Empirical Climate Impacts

fy(yt|Yt−1, θ) = fe|c(et|ct, Yt−1, λe|c)︸ ︷︷ ︸
Conditional

· fc(ct|Yt−1, λc)︸ ︷︷ ︸
Marginal

Empirical Climate Model

fy(yt|Yt−1, θ) = fc|e(ct|et, Yt−1,φc|e) · fe(et|Yt−1,φe)

Conditions to study the conditional model alone to:

(i) conduct inference on the parameter of interest (weak exogeneity)
(ii) conduct conditional forecasts (strong exogeneity)
(iii) counterfactual policy analysis (super-exogeneity)
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(i) Weak Exogeneity and Climate

Inference in the conditional model alone?

fy(yt|Yt−1, θ) = fe|c(et|ct, Yt−1, λe|c)︸ ︷︷ ︸
Conditional

· fc(ct|Yt−1, λc)︸ ︷︷ ︸
Marginal

Weak Exogeneity:
ψ = ψ(λe|c), parameter of interest a function of λe|c alone, and
λe|c & λc are variation free.
Cointegration: Physical interpretation for adjustment α (Weak Ex.)
Weak Ex. cannot hold for both variables et, ct for β

Emp. Climate Impacts Emp. Climate Model

Restriction α1 = 0 (Emiss.) α2 = 0 (Temp.)
LR χ2(1) = 0.26 [p=0.61] χ2(1) = 19.55 [p<0.00]

Bootstrap 0.25 [p=0.66] 19.96 [p<0.00]

Temp. adjusts to coint. relation: β enters marginal model of ct
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(ii) Strong Exogeneity and Climate

Granger Non-Causality: Climate Taking vs. Climate Setting
Climate-Taking if: fc(ct|Yt−1, λc) = fc(ct|ct−1, λc)
Climate Setting if: fc(ct|Yt−1, λc) = fc(ct|ct−1, et−1, λc)

Cond. forecasts of impacts if region is not climate-setting.
Reverse applies to climate forecasts: socio-econ/policy adapting
to climate observations (e.g. COP21 Paris)

Emp. Climate Impacts Emp. Climate Model

Restriction Excl. Temp. in Emiss. Excl. Emiss. in Temp.
(α1β

′ = 0 Γ12 = 0) (α2β
′ = 0 Γ21 = 0)

LR χ2(2)=3.98 [p=0.14] χ2(2) 27.76 [p<0.00]
(Climate setting)

US: No temp. feedback onto emissions & Climate-setting
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(iii) Super-Exogeneity and Climate

Weak exogeneity + invariance to shocks:

∂λe|c

∂λc
= 0 ∀λc ∈ Cλc

Empirical Climate Impacts: Counter-factuals (e.g. geo-engin.)

Empirical Climate Model: Test for no-tipping elements
physical relationship may break down at tipping element
H0(super exogeneity): no tipping element

Test in a system by detecting shocks in marginal model at p = α1:

∆et = µe + α1β
′yt−1 + Γ1∆yt−1 +

T∑
i=1

1i=tδi,α1︸ ︷︷ ︸
All possible Impulses

+ εe,t

Test joint significance in conditional climate model at p = α2:

∆ct = λ0 + α2β
′yt−1 + λ2∆et−1 + λ3∆ct−1 + λ4∆et +

m∑
i=1

1t=tiδi,α1︸ ︷︷ ︸
Detected Impulses

+ vc,t
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(iii) Super Exogeneity Applied

Impulse-Indicators (in Marginal Emiss.) F-Super Exog. (in Temp.)

1919, 1921, 1923, 1930, 1931, 1932,
1938, 1949, 1941, 1942 F(10,94)=1.57 [p=0.13]

∆US SO2 Emiss. Detected Impulses (IIS) 
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Emission shocks already reflected in conditional climate model.
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Application

Conclusions from bivariate system (toy) model:

Temp. adjusts to Climate-Econ. Equilibrium & Emissions not
(Weak Ex.)
US is Climate Setting for Temp. through SO2

No feedback from Temp. onto Emissions (Cond. forecasting)
Response of Temp to SO2 invariant to shocks (e.g. WWII) – no
tipping point.

Contrast to: conclusions of invalid conditional impacts model:

∆êt = 6.52
(5.07)

− [0.45
(0.44)

ct−1 + 0.07
(0.03)

et−1]︸ ︷︷ ︸
appears significant

−1.15
(0.33)︸ ︷︷ ︸∆ct

γ̂3=D̂=Σ̂ecΣ̂
−1
c

− 0.02
(0.09)

∆et−1−0.81
(0.33)︸ ︷︷ ︸∆ct−1

γ̂5=(Γ̂12−D̂Γ̂22)

Incorrectly conclude that [ct−1, et−1] enter the model (p=0.03)
(full system p=0.26)
Risk of mis-interpreting coeffs. on ∆ct and ∆ct−1 as impacts
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Consequences of WE failure

Invalid conditional model vs. system model:
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Conclusions

Exogeneity:

Weak Ex.: to study conditional alone

Strong Ex.: Granger Non-Causality + Weak (feedbacks & cond.
forecasting)

Super Ex.: Invariance + Weak (policy/counterfactuals/Lucas
Critique)

Testable in systems: consider what can be conditioned on.

Predeterminedness does not imply Weak Exogeneity or vice versa.
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