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Indicator Saturation References

Core References for Lecture 2:

Hendry, Johansen, and Santos (2008)* – Impulse Indicator
Saturation (IIS)

Castle, Doornik, Hendry, and Pretis (2015)* – Step Indicator
Saturation (SIS)

Johansen and Nielsen (2009) – IIS Asymptotic Theory

Johansen and Nielsen (2016) – IIS Asymptotic Theory
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US Food Demand

US Food Demand (Expenditure) – Hendry and Mizon (2011):
ef: food expenditure 
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US Food Demand

US Food Demand (Expenditure) – Hendry and Mizon (2011):

The data variables are (lower case denoting logs):

. ef is constant price, per capita, expenditure on food

. e is constant price, per capita, total expenditure

. p is deflator of total expenditure

. y is constant price, per capita, income

. pf − p is real price of food

. s = (y− e) is an approximation to the savings ratio

. a is average family size–demographic effects

. n is total population of the USA–
should be irrelevant as per capita data.
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Food Demand changes

There are considerable changes over the period:

ef and e fall sharply at the beginning of the Great Depression,
rise substantially till WWII, fall after, then resume a gentle rise,

so ∆ef is much more volatile pre WWII: ∆e has a similar but less
pronounced pattern).

pf − p is quite volatile till after WWII, then is relatively stable,

s rises from ‘forced saving’ in WWII.

a has fallen considerably, partly reflecting changes in social
mores.
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Modelling Food Demand

Tobin (1950) modelled US food demand:
used time series 1912-48.
We use extended time-series data, updated by Reade (2008).

The basic theory is:

ef = f (e,pf − p, s,a) (1)

Conventional theory expects:

∂ef
∂e

> 0,
∂ef

∂ (pf − p)
< 0,

∂ef
∂a

< 0,
∂ef
∂n

= 0 (2)
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Static model

The static theory model estimates are:

ef,t = 5.30
(4.02)

+ 0.77
(0.14)

et + 0.11
(0.08)

(pf − p)t + 0.72
(0.14)

st − 0.36
(0.23)

at − 0.73
(0.22)

nt

R2 = 0.94 χ2nd(2) = 19.5∗∗ Farch(1, 72) = 216.8∗∗ Far(2, 66) = 44.3∗∗

σ̂ = 0.055 Freset(2, 66) = 18.1∗∗ Fhet(10, 63) = 23.2∗∗

The static economic-theory model has a very poor fit, and does
not adequately capture behaviour of observed data.

The price elasticity (pf − p)t has the ‘wrong sign’, contradicting
(2), but is insignificant.

Although it is theoretically irrelevant, population nt is significant.

Finally, every mis-specification test strongly rejects.
Next Figure shows the estimated model fails to describe the
1930s.
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Static Model
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‘Discovering Indicator Saturation’

Magnus and Morgan (1999) (‘competition’):
Most contributors found dynamic models were non-constant over
full sample 1931–1989, so modelled post 1950 only.

Hendry (1999):
i) Added Indicators for inter-war & post-war

Food program, Great Depression
ii) Reversed procedure: indicators for all observations from 1950s
onwards

1970s

Retained significant and re-select.

Hendry (1999) found a constant equation over 1931–1989 by
adding impulse indicators pre-1950 for large outliers, identified as
being due to a food program and post-war de-rationing.
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Food Expenditure with Impulses

∆ef = 0.13
(0.035)

∆ef,t−1 − 0.11
(0.012)

I31 − 0.11
(0.012)

I32

+ 0.028
(0.0096)

I34 − 0.027
(0.0096)

I43 + 0.031
(0.0085)

I70

+ 0.59
(0.04)

∆et − 0.32
(0.031)

∆(pf − p)t − 0.19
(0.1)

∆nt

+ 0.23
(0.035)

∆st − 0.36
(0.023)

ECMt−1

Far(2, 59) = 0.68 χ2nd(2) = 1.78 Farch(1, 70) = 0.27

Freset(2, 59) = 0.23 Fhet(12, 54) = 1.01

Solved cointegrating relation with dummies excluded:

ECM = ef − 0.63
(0.01)

e+ 0.13
(0.04)

(pf − p) − 1.12
(0.08)

s+ 0.45
(0.01)

n

∆ef Fitted 

1930 1940 1950 1960 1970 1980 1990 2000
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r: ∆ef (scaled) 
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‘Discovering Indicator Saturation’

Adding indicators for every observation?
David Hendry trying to convince Søren Johansen at Engle and

Granger Nobel award ceremony 2003 Stockholm:
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Motivation

Unknown unknowns: unknown number of location shifts/outliers of
unknown magnitudes at unknown times.

Testing model mis-specification
Learning from data
Testing super exogeneity

Unmodelled location shifts have pernicious effects:

in sample, mis-specified empirical models, distorting inference;
out of sample, assess forecast failure.

Forecasts CHF/NOK - Exchange Rate 
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Spot the Step-Shift?
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Swiss-Franc to Norwegian Krone Exchange Rate: Forecasts from 14.1.2015 onwards

C
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O
K

Forecasts CHF/NOK - Exchange Rate 
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Detecting multiple breaks

Numbers and magnitudes of breaks in models usually unknown:
obviously unknown for unknowingly omitted variables.
General approach required to detect location shifts anywhere in
sample while also selecting over many candidate variables.

Theory-embedding in general model allowing for outlier/location
shift at any point in time.

Impulse-Indicator Saturation (IIS) creates complete set of indicator
variables:

{
1{j=t}

}
= 1 when j = t and 0 otherwise for j = 1, . . . , T :

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0
. . .

 (3)

add T impulse indicators to set of candidate variables when T obs.
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Impulse-indicator saturation (IIS)

Hendry, Johansen, and Santos (2008): impulse-indicator saturation
(IIS): adding an indicator dummy variable for each observation to
candidate set of variables for the model.

yt = α0 + α1I1 + α2I2 + ...+ αT IT + ut. (4)

This has T + 1 parameters for T observations.
However, the impulses can be added in blocks (say T = 100):

1 Partition in 2 blocks, B1 = I1, ..., I50, B2 = I51, ..., I100,
C.f. estimating models over two subsamples of T/2.

2 Run model selection on each block, form union S,
3 Run model selection on S.
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Impulse-indicator saturation

Consider yt ∼ IID
[
µ,σ2ε

]
for t = 1, . . . , T

First, include half of indicators, record significant:
just ‘dummying out’ T/2 observations for estimating µ
Then omit, include other half, record again.
Combine sub-sample indicators, & select significant.

αT indicators selected on average at significance level α
Feasible ‘split-sample’ (IIS) algorithm: see Hendry, Johansen, and
Santos (2008)
Many well-known procedures are variants of IIS.

Chow (1960) test is sub-sample IIS over T − k+ 1 to T without
selection.

Salkever (1976) tests parameter constancy by indicators.

Recursive estimation equivalent to IIS over future sample,
reducing indicators one at a time.
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Illustrating IIS

Next Figure illustrates ‘split-half’ approach for yt ∼ IN
[
µ,σ2y

]
Three rows correspond to the three stages:

first half of the indicators, second half, then selected indicators
combined.

Three columns report:

indicators entered,

indicators retained,

and fitted and actual values of selected model.

Many indicators added, but only one is retained in row 1.
When second half entered (row 2), none is retained.
Combined retained dummies entered (here just one), and
selection again retains it.
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Null ‘split-sample’ search in IIS
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IIS Theory

Consider adding first half of the indicators:

yt = µ1 +

T/2∑
j=1

δjdj,t + εt. (5)

The estimators are:

µ̂1 =
1

T/2

T∑
t=T/2+1

yt, (6)

s21 =
1

T/2− 1

T∑
t=T/2+1

(yt − µ̂1)
2 (7)

δ̂t = yt − µ̂1, t = 1, . . . , T/2 (8)

so that residuals are:
ε̂t = 0, t = 1, . . . , T/2

ε̂t = yt − µ̂1, i = T/2+ 1, . . . , T
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Split-Half Estimators

The final estimates are:

µ̃ =

∑T1
t=1 yt1{|t1,δ̂t |<cα}

+
∑T
t=T1+1 yt1{|t2,δ̂t |<cα}∑T1

t=1 1{|t1,δ̂t |<cα}
+
∑T
t=T1+1 1{|t2,δ̂t |<cα}

(9)

and

σ̃2ε =

∑T1
t=1(yt − µ̂1)

21{|t
1,δ̂t

|<cα} +
∑T
t=T1+1(yt − µ̂2)

21{|t
2,δ̂t

|<cα}∑T1
t=1 1{|t1,δ̂t |<cα}

+
∑T
t=T1+1 1{|t2,δ̂t |<cα}

− 1
.

(10)
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Properties of IIS

Let yt = µ+ σεεt, t = 1, . . . , T be i.i.d., where εt has symmetric
continuous density f(.) with mean zero, variance one. Let T = T1 + T2
and assume that T1/T → λ1 and T2/T → λ2 where 0 < λ1, λ2 < 1,
with λ1 + λ2 = 1 then:

T 1/2 (µ̃− µ)
D→ N

[
0,σ2εσ

2
µ

]
(7)

where

σ2
µ =

(∫cα
−cα

f(ε)dε

)−2 [∫cα
−cα

ε2f(ε)dε(1+ 4cαf(cα)) +

(
λ21
λ2

+
λ22
λ1

)
(2cαf(cα))

2

]
where:

∫cα
−cα

f(ε)dε = 1− α

measures the impact of truncating the residuals.
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Split-Half Estimator

Using
∫cα
−cα

f(ε)dε = 1− α, and for the normal distribution,
f(ε) = φ(ε), using integration by parts we find:∫cα

−cα

ε2φ(ε)dε =

∫cα
−cα

φ(ε)dε− 2cαφ(cα),

so that for λ1 = λ2 = 0.5 (split-half) above simplifies to:

σ2µ =
1

(1− α)

(
1+ 4cαφ(cα) −

2cαφ(cα)

(1− α)
[1+ 2cαφ(cα)]

)
where σ2µ → 1 as |cα|→∞.
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Variance Estimator

σ̃2ε =

∑T1
i=1(yt − µ̂1)

21{|t
1,δ̂t

|<cα} +
∑T
t=T1+1(yt − µ̂2)

21{|t
2,δ̂t

|<cα}∑T1
t=1 1{|t1,δ̂t |<cα}

+
∑T
t=T1+1 1{|t2,δ̂t |<cα}

− 1
.

(11)

The estimator σ̃2ε, has the limit

σ̃2ε
P→ σ2εκ = V(ε||ε| < cα).

For the normal distribution, f(ε) = φ(ε),we have the expression:

κ = 1−
2cαφ(cα)

1− α
.

where κ→ 1 as |c|→∞
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IIS under the null

Effects of Impulse Indicator Saturation under null:

Selection effects on mean and variance estimators similar to
‘trimming’:

Small loss in efficiency (consistency effect on variance estimate
σ̃ε, efficiency effect through σ2µ)
Controllable by choosing more conservative α

IIS interpretable as robust estimator, but allows for joint selection over
variables.

Johansen and Nielsen (2016) ‘gauge’ is consistent:

ĝ =
1

T

T∑
t=1

1(|yt−xtβ̃|>σ̃εcα) (12)

E[ĝ]→ P(|ε1| > σcα) = α (13)
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Dynamic generalizations of IIS

Johansen & Nielsen (2009) & (2016) extend IIS to both stationary
and unit-root autoregressions:

When distribution is symmetric, adding T impulse-indicators to a
regression with n variables, coefficient β (not selected) and second
moment Σ:

T 1/2(β̃ − β)
D→ Nn

[
0,σ2εΣ

−1Ωβ
]

Efficiency of IIS estimator β̃ with respect to OLS β̂ measured by Ωβ
depends on cα and distribution

Must lose efficiency under null; small loss αT : 1 observation at
α = 1/T if T = 100, despite T extra candidates.

Potential for major gain under alternatives of breaks and/or data
contamination: variant of robust estimation
but can be done jointly with all other selections
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A single outlier

Single Outlier at t = T1:

DGP: yt = λ11{t=T1} + εt

matched by model: yt = γdt=T1

(γ̂− λ1) = (d ′t=T1dt=T1)
−1d ′t=T1εt

= εT1

Unbiased but not consistent (Hendry and Santos (2005)). With
variance:

V[γ̂] = V[εT1 ] = σ
2
ε

t-statistic:

tγ̂ =
γ̂

σ̂ε
≈ (γ̂− λ1)

σε
+
λ1

σε
∼ N(ψλ1 , 1)
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IIS for a location shift

Illustrate IIS for a location shift of λ over last k observations:

yt = µ+ λ1{t>T−k+1} + εt (14)

where εt ∼ IN
[
0,σ2ε

]
and λ 6= 0.

Optimal test is t-test for a break in (14) at T − k+ 1 onwards,
requires:

knowledge of location-shift timing

knowing that it is the only break

is same magnitude break thereafter

The next slide records IIS for λ = 10σε in (14) at 0.75T = 75.
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Structural break example

yt Fitted 

0 20 40 60 80 100

0

5

10

yt Fitted Scaled residuals 

0 20 40 60 80 100
-2

0

2 Scaled residuals 

Size of the break is 10 standard errors at 0.75T

There are no outliers in this mis-specified model
as all residuals ∈ [−2, 2] SDs:

outliers 6= structural breaks

step-wise regression has zero power
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‘Split-sample’ search in IIS
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How IIS works for a location shift

Initially, many indicators now retained (top row),
considerable discrepancy between the first-half and second-half
means.

When second set entered, all indicators for location shift period
are retained.

Once combined set entered, despite large number of dummies,
selection reverts to just those for break period.

Under null, indicators significant in sub-sample would remain so
overall, for alternatives, sub-sample significance can be transient, due
to unmodeled features that occur elsewhere in data.
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IIS and SIS

Extension of IIS to step-indicator saturation (SIS):
Regression model saturated with complete set of step indicators

S1 =
{
1{t6j}, j = 1, . . . , T

}
where 1{t6j} = 1 for observations up to j, and zero otherwise.

Step indicators cumulate impulse indicators up to each next
observation:

IIS: Impulses SIS: Step shifts
1 0 0 0
0 1 0 0
0 0 1 0

0 0 0
. . .



1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


Step indicators take the form:
ι′1 = (1, 0, 0, . . . , 0), ι′2 = (1, 1, 0, . . . , 0), . . . , ι′T = (1, 1, 1, . . . , 1),
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IIS and SIS

Extension of IIS to step-indicator saturation (SIS):
Regression model saturated with complete set of step indicators

S1 =
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1{t6j}, j = 1, . . . , T

}
where 1{t6j} = 1 for observations up to j, and zero otherwise.
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Shift from t=25 to t=50
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Differences between IIS and SIS

IIS and SIS - important differences necessitate a new analysis:

Impulse Indicators: mutually orthogonal. Step indicators
overlap increasingly as their second index increases.

Two indicators are required to characterize an outlier or shift not
at the end of the sample: 1{t6T2} − 1{t<T1}.

Opens the door to “designed break functions” (Volcanoes! See
Pretis, Schneider, Smerdon, and Hendry (2016))
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Step-indicator saturation

The Step-Indicator Saturation Model (Infeasible as N >> T ):

yt = β0 + β′1zt +

T−1∑
j=1

δj1{t6j} + εt where εt ∼ IN
[
0,σ2ε

]
(15)

Split-Half Approach:
Add the first T/2 indicators from the saturating set S1:

yt = β0 + β′1zt +

T/2∑
j=1

δj1{t6j} + εt (16)

can be estimated directly, indicators retained when estimated

coefficients δ̂j satisfy
∣∣∣tδ̂j∣∣∣ > cα where cα is the critical value for

significance level α.
Locations are recorded, all those indicators are dropped, second
set is then investigated.
Combine selected indicators and re-select.
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Null rejection frequency of SIS

Under the null with α = 1/T , at both sub-steps on average, αT/2
(namely 1/2 an indicator) will be retained by chance.

On average αT = 1 indicator will be retained from the combined
stage: gauge should equal nominal size.

One degree of freedom is lost on average.

When m indicators are selected in a congruent representation at
significance level α:

yt = β0 + β′1zt +

m∑
i=1

φi,α1{t6Ti} + vt (17)

where vt ∼ IN
[
0,σ2v

]
, and coefficients of significant indicators are

denoted φi,α.
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Illustrating SIS when no location shifts

‘Split-sample’ search by SIS at 1%.
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Illustrating SIS when no location shifts
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T = 100, and no shifts, retains 2 significant steps, so lose 2
degrees of freedom–but could be combined to one dummy.
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Simulating SIS when no location shifts

Under the null of no shift:
Model with n = 0: using the split-half approach where β0 = 0,
εt ∼ IN[0,σ2ε] and σ2ε = 1, for a sample size T = 100 and various
values of α.

Retention frequency of irrelevant indicators: close to α, on average
αT irrelevant step indicators retained under the null:

Overall Gauge 
First Half Gauge 
Second Half Gauge 
45 Deg. × p_alpha 

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055

0.025

0.050

45 Deg.

Nominal Significance Level α

G
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ge

Retention frequency of irrelevant step indicators under no shift for varied α
Overall Gauge 
First Half Gauge 
Second Half Gauge 
45 Deg. × p_alpha 
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Simulating SIS when no location shifts

Properties of two out of the 100 step indicators (T1 = 20, T2 = 35)
under the null of no shift:

γ̂20 
Normal 
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Density of Estimators (under null)

T1=20

γ̂20 
Normal 

t(γ̂20) 
Normal 
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t-Statistics (under null)

t(γ̂20) 
Normal 

γ̂35 
Normal 
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γ̂35 
Normal 

t(γ̂35) 
Normal 

-2 0 2 4
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Both estimators γ̂T1 and γ̂T2 have densities close to Normal, centered
on zero, and central t-statistics.
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Power of a step-indicator test for a
known mean shift

Known mean shift from λ1 6= 0 to λ1 = 0 at time 0 < T1 < T/2 in DGP:

yt = µ+ λ11{t6T1} + εt where εt ∼ IN
[
0,σ2ε

]
(18)

where λ1 6= 0: shift is from µ+ λ1 to µ.
Nesting model of (18) when the break is known:

yt = ϕ+ δT11{t6T1} + vt (19)

As
∑T
t=1 1{t6T1} =

∑T1
t=1 1{t6T1} = T1, estimating (19) delivers:

(
ϕ̂− µ

δ̂T1 − λ1

)
=

(
T T1
T1 T1

)−1
( ∑T

t=1 εt∑T1
t=1 εt

)
=

(
ε(2)

ε(1) − ε(2)

)
where ε(1) = T

−1
1

∑T1
t=1 εt average over first T1 observations and

ε(2) = (T − T1)
−1
∑T
t=T1+1 εt
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Power of a step-indicator test for a
known mean shift

And the variance is:

V

[(
ϕ̂− µ

δ̂T1 − λ1

)]
= σ2ε (T− T1)

−1

(
1 −1

−1 T−1
1 (T − T1) + 1

)
.

For the DGP in (18):

√
T∗
(
δ̂T1 − λ1

)
∼ N

[
0,σ2ε

]
(20)

Hence, neglecting the estimation uncertainty in σ̂2ε and letting
(T−1

1 + (T − T1)
−1)−1 = T∗:

t
δ̂T1

=

√
T∗δ̂T1

σ̂ε
≈
√
T∗(δ̂T1 − λ1)

σε
+

√
T∗λ1
σε

∼ N
[
ψ∗λ1 , 1

]
(21)

where T∗ = T1 when there is no intercept. Yields
√
T∗ times the

corresponding non-centrality for an individual impulse indicator.
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Illustrating ‘split-half’ SIS for a
single location shift

Add half indicators and select ones significant at 1%.
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Illustrating ‘split-half’ SIS for a
single location shift

Drop, add other half indicators and again select at 1%.
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Illustrating ‘split-half’ SIS for a
single location shift

Combine retained indicators and re-select at 1%.
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Matching theory: initially retains last step indicator closest to
mean shift, then finds correct shift, so eliminates redundant
indicator. Just one step indicator needed.
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Potency for an unknown shift

Detection of single location shift falling within a half-sample of the data
(0 < T1 < T/2) using split-half analysis of SIS where DGP is:

y = λ1ιT1 + ε (22)

Add first half of step indicators, model is:

yt =

T/2∑
j=1

γj1{t6j} + vt (23)

Intercept of zero highlights main aspects of the algebra, written as:

y = D1γ(1) + v (24)

where γ(1) = (γ1 . . .γT/2)
′ and D1 = (ι1 . . . ιT/2). Then:

γ̂(1) =
(
D′1D1

)−1
D′1y = λ

(
D′1D1

)−1
D′1ιT1 +

(
D′1D1

)−1
D′1ε

(25)
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Properties following from D1

The inverse of (D′1D1) is the ‘double difference’ matrix:

(
D′1D1

)−1
=



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

. . . . . . . . . . . .
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 1

 (26)

so:

(
D′1D1

)−1
D′1 =



1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . . . . .
...

0 0 0 . . . 1 −1
0 0 0 . . . 0 1


is the forward-difference matrix.
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Split-half for an unknown shift

Letting ∇εt = εt − εt+1, from γ̂(1) = (D′1D1)
−1

D′1y:

γ̂(1) = λ1r +∇ε(1)

where r is a T/2× 1 vector with unity at t = T1and zeroes elsewhere,
so: (

γ̂(1) − λ1r
)
= ∇ε(1) (27)

where the (T/2× 1) vector ∇ε(1) = (∇ε1,∇ε2, . . . ,∇εT/2, εT/2)′.
All elements of γ̂(1) up to the T1th are zero, only the T1th reflect λ1,
corresponding to the location shift.

Only the value of λ1 at the shift is being picked up, incremental
information equivalent to an impulse indicator for T1:

γ̂T1 = λ1 +∇εT1 (28)
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Low potency if no selection

Hence: (
γ̂(1) − λ1r

)
ãpp

N
[
0,σ2ε

(
D′1D1

)−1
]

(29)

The estimated error variance adjusted for degrees of freedom:

σ̂2ε =
2

T

T∑
t=T/2+1

(yt − ŷt)
2

will be an unbiased estimator of σ2ε. However, for IID errors (because
of ∇εT1):

V [γ̂T1 ] = 2σ2ε (30)

so that:

tγ̂T1
=

γ̂T1√
2σ̂ε

≈
(γ̂T1 − λ1)√

2σε
+

λ1√
2σε

∼ N

[
ψλ1√

2
, 1

]
(31)

where ψλ1/
√
2 is the non-centrality. Note: indep. of length of shift.
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Selection is essential

V [γ̂T1 ] = 2σ2ε due to collinearity between step indicators:

Eliminating insignificant indicators by sequential selection or
multi-path search is essential.

Example: At 1%, cα ≈ 2.7, normalizing on σε = 1, requires λ1 > 3.8
for even a 50% chance of significance before simplification.

When insignificant indicators are deleted, V[γ̂T1 ] falls rapidly:

If all irrelevant indicators eliminated, just ιT1 remains, the
non-centrality for a single shift ψ1 =

√
T∗λ1/σε which is

√
2T∗ larger

than before selection.
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Second half

First half step indicators are then eliminated and second half,
D2 = (ιT/2+1 . . . ιT ) added.

If significant steps from first half retained: only α/2 of estimated
coefficients of D2 should be significant

If significant steps are not retained then model becomes:

yt =

T∑
j=T/2+1

γj1{t6j} + vt (32)

written as:
y = D2γ(2) + v (33)

where γ(2) = (γT/2+1 . . .γT )
′ and D2 = (ιT/2+1 . . . ιT ). From (22):

γ̂(2) =
(
D′2D2

)−1
D′2y = λ1

(
D′2D2

)−1
D′2ιT1 +

(
D′2D2

)−1
D′2ε

(34)
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Second half analyzed separately

(
D′2D2

)
=
(
D′1D1

)
+

1

2
Tcc′

where c is a T/2× 1 vector of ones and j is a T/2× 1 vector of zeroes
other than unity at first element:

(
D′2D2

)−1
=

(
IT/2 +

T

2
jc′
)−1 (

D′1D1

)−1

and:
γ̂(2) = λ1T1

(
IT/2 +

T

2
jc′
)−1

j +
(
D′2D2

)−1
D′2ε (35)

Only first element of γ̂(2) depends on λ1: indicator nearest to shift
retained if relevant indicators not ‘carried forward’.
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Final Step

Finally, combine selected step indicators and re-select. When all
irrelevant indicators are removed and the relevant one retained:

yt = γT11{t6T1} + vt (36)

perfect selection coincides with DGP; retained irrelevant indicators
reduce degrees of freedom, and increase variances.
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Simulating SIS for a single
location shift

Location Shift at T1 = 35, magnitude λ1 = 4σε, selection at α = 0.01.
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Sequential selection (grey) reduces variance vs. split-half (open, blue).
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Simulating SIS for alternative methods
varying break lengths and magnitudes

Exact (T̂1 = T1) retention frequency of break for alternative methods,
varying break lengths l and magnitudes, λ1
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Split-Half: 2SD 
Multi-Path: 2SD 

Known Break: 4D 
Split-Half: 4SD 
Multi-Path: 4SD 
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Mis-selected indicator

Selected step indicators may not exactly match location shift

Random draws of error: Mis-timed break indicator for shift at t = 25:
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Mis-timing of selected indicators

SIS selection can ‘miss’ by periods. Low potency primarily due to
mis-timing rather than not detecting the shift:

T1 T1±1 T1±2 T1±3 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Exact timing: t=T1

Plus/Minus 1: t=T1±1
Plus/Minus 2: t=T1±2

Plus/Minus 3: t=T1±3

Potency for varying break lengths and timing accuracy for step shift of 2SD

≈0.9

≈0.6

T1 T1±1 T1±2 T1±3 

Even for λ = 2σε and short breaks, potency is 0.9 or higher by T1 ± 3.
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Generalization to retained regressors

Simulate SIS with n < T general regressors, with single step shift with
unknown timing requiring two indicators, the DGP is:

yt = β′1zt+λ1
(
1{t6T2} − 1{t6T1}

)
+εt where εt ∼ IN

[
0,σ2ε

]
(37)

Even including 10 relevant regressors (not selected over), densities of
the two shift estimators, γ̂i, centered around true value λ1 = 4σε:

Y Ŷ Fitted Model 
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Potency unaffected by regressors (≈ 0.5 for 2SD, ≈ 0.9 for 4SD)
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Implementation

Step and Impulse-Indicator Saturation (SIS, IIS) in PcGive/Ox

isat in in R-package ‘gets’ (Pretis et al. 2016)
(with Genaro Sucarrat and James Reade)
Note: SIS construction differs between PcGive & R

PcGive: dT1 = 1{t6T1}, γ̂ > 0 implies negative shift.
R: dT1 = 1{t>T1}, γ̂ > 0 implies positive shift.

SIS in PcGive/Ox:

model.Autometrics(0.001, “SIS”, ...);

SIS in R:  isat (gets)

isat(y, mxreg=..., ar=1:2,
 sis=TRUE, iis=FALSE, t.pval=0.005,...)
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Application: Sea Surface Temperature

Global SST – Climate/Weather Indicator
Shape of trend? Breaks in series? El Niño Southern Oscillation?
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SST: Model Setup

Model:
yt = f(zt) + βxt + δD + εt (38)

T=108 (1900-2008)
y= Global Mean SST Anomalies (C) relative to 1950-79
z=t, x= Southern Oscillation Index (SOI) (atm. pressure at SL)
N = 108 + 6 = 114 variables

Specification:
SIS, pα = 0.001 (0.1%)
Nonlinear trend: B-spline basis (5 degree polynomial)
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SST: SIS Results (Fitted)

1900 1920 1940 1960 1980 2000

−0
.8

−0
.4

0.
0

0.
4

S
S

T,
 C

1900 1920 1940 1960 1980 2000

−0
.1

0.
1

0.
3

0.
5

B
re

ak
 in

 In
te

rc
ep

t, 
C

Two breaks: 1941, δ̂1 = 0.43∗∗∗C (se=0.046)
1946, δ̂2 = −0.24∗∗∗C (se=0.048)
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SST: Interpreting the structural break

WWII: 1941/1942 Measurements: buckets to engine intake
Danger of measurements (light)
Americans joined 1941/1942

Post-WWII: Partly changed back
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SST: Interpreting the structural break

WWII: 1941/1942 Measurements: buckets to engine intake
Danger of measurements (light)
Americans joined 1941/1942

Post-WWII: Partly changed back
Buckets: cold bias (≈ 0.3C) (Matthews, 2012)

SIS: δ̂1 = 0.43 (±0.046)
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SST: Linear & Break Component

SOI Effect (linear)
SIS: β̂ = −0.004∗∗∗ (se=0.001)
Theory consistent: SOI > 0 (La Niña)→ lower temp. (hiatus?!)

Breaks
Correct SST record for ’bucket bias’
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Conclusions

Commence with general formulation – general unrestricted model:

yt = β′zt+γ′wt+

T∑
j=1

δIIS,j1{j=t}+

T−1∑
j=1

δSIS,j1{j6t}+vt t = 1, . . . , T

Embed theory zt
Expand model wt (almost costless if theory correct)

Indicators δt (almost costless under null)

Ensuring valid conditioning – exogeneity
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