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Overview

General-to-Specific Time Series Modelling

4 Lectures (1.5hrs each)
Model Discovery and Theory Embedding
Indicator Saturation
Exogeneity
Theory of Reduction

Centred around core papers with unifying theme:
Theories are incomplete (& likely wrong)
not imposing theory on data
via model selection from a general specification tackle empirical
problems jointly and learn from the data
while retaining available theory insights

Slides online at: www.felixpretis.org/teaching
Related exam questions: 2011Q7, 2012Q7, 2013Q3, 2014Q2,
2015Q2, 2016Q1, 2017Q1

no forecasting this course.
instead focus on exogeneity (only in past paper 2017Q1).
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Theory Embedding References

Core References for Lecture 1:

Hendry and Johansen (2015)* – Embedding Theory

Hendry and Krolzig (2005)* – GETS Modelling

Hendry and Doornik (2014) – Model Discovery (book)
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Motivation

“The basis of econometrics, the economic theories that we had been
led to believe in by our forefathers, were perhaps not good enough. It

is quite obvious that if the theories we build to simulate actual
economic life are not sufficiently realistic, that is, if the data we get to
work on in practice are not produced the way that economic theories
suggest, then it is rather meaningless to confront actual observations

with relations that describe something else.”

Haavelmo (1989), Nobel Lecture
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Classical econometrics:
covert discovery

Postulate:
yt = β′xt + εt, t = 1, . . . , T (1)

Aim to obtain ‘best’ estimate of the constant parameters β,
given all n correct variables, x, ‘independent’ of {εt} and
uncontaminated observations, T, with εt ∼IID

[
0,σ2ε

]
.

Many tests to ‘discover’ departures from assumptions of (1),
followed by recipes for ‘fixing’ them–
covert and unstructured empirical model discovery.
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Robust statistics:
discovering the best sample

Same start (1), but aim to find a ‘robust’ estimate of a constant β by
selecting over T, given correct set of relevant variables x.

Worry about data contamination and outliers, so select sample, T∗,
where outliers least in evidence.

All other difficulties still need separate tests, and must be fixed if found.

x rarely selected jointly with T∗, so assumes x = x∗.

Similarly for non-parametric methods:
aim to discover ‘best’ functional form or distribution, assuming correct
x, no data contamination, constant β, etc., all rarely checked.

Each assumes away what the other approaches tackle.

Need to tackle them all jointly.
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Automatic empirical model discovery

Re-frame empirical modelling as discovery process:
part of a progressive research strategy.

Starting from T observations on N > n variables {xt},
aim to find β∗ for s lagged functions g(x∗t) . . . g(x

∗
t−s) of a subset of

n variables x∗, jointly with T∗ and {1{t=ti}} – indicators for shifts,
outliers etc.

Embed initial economic analysis y = f(x) in a much more general
empirical model.

Approach explained in Castle, Doornik, and Hendry (2011)
extensive discussion in Hendry and Doornik (2014).
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Implications for automatic methods

Seven stages for discovery in econometrics
1 theoretical derivation of the relevant set x.
2 going outside current view by automatic creation of a general

model from x embedding y = f(x).
3 search by automatic selection to find viable representations

– too large for manual labor.
4 criteria to recognize when search is completed

– congruent parsimonious-encompassing model.
5 quantification of the outcome

– translated into unbiasedly estimating the resulting model.
6 evaluate discovery to check its ‘reality:

new data, new tests or new procedures.
Can also evaluate the selection process itself.

7 summarize vast information set in parsimonious but undominated
model.
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Retaining economic theory insights

Approach is not atheoretic.

Theory formulations should be embedded in starting point
(general unrestricted model – GUM), and can be retained without
selection.

Call such imposition ‘forcing’ variables–ensures they are retained, but
does not guarantee they will be significant.

Much observed data variability in economics is due to features absent
from most economic theories:
which empirical models must handle.

Extension of candidates, xt, in GUM allows theory formulation as
special case, yet protects against contaminating influences (like
outliers) absent from theory.

‘Extras’ can be selected at tight significance levels.
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The Local DGP (LDGP) is the target for
model selection

The set of variables {xt} chosen for analysis will depend on the
subject-matter theory, institutional knowledge, and previous evidence,
so any theory-model object is directly related to the target LDGP.

But the LDGP is always unknown in practice, which is why Hendry and
Doornik (2014) emphasize the need to discover the LDGP from the
available evidence.

Doing so requires:

formulating the theoretical framework;

nesting that LDGP in a suitably general unrestricted model;

while also embedding the theory model in that GUM;

searching for the simplest acceptable representation;

then stringently evaluating that selection for congruence,
encompassing and invariance.

Fulfills all the steps for empirical discovery with theory
evaluation.
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Excluded Relevant Variables

Hendry and Johansen (2015): Embedding Theory
– an example of pitfalls of excluding relevant variables &
non-stationarity:

Relevant variables wt excluded from model of yt, mean-shifts in
included policy variable alters outcome:

DGP for yt:
yt = β′xt + γ

′wt + εt (2)

where εt ∼ IN[0,σ2ε] and β 6= 0,γ 6= 0.

wt = ψ + Ψxt + vt (3)

where E[xtv
′
t] = 0 and Ψ 6= 0. Let E[xt] = δ1.
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When relevant variables wt are excluded, yt given xt becomes:

yt = γ ′ψ + (β ′ + γ ′Ψ)δ1 + (β ′ + γ ′Ψ)(xt − δ1) + γ
′vt + εt

where means are separated out such that E[xt − δ1] = 0 and hence
E[yt] = γ ′ψ + (β ′ + γ ′Ψ)δ1.

The mis-specified regression model is then:

yt = λ0 + λ
′
1xt + et (4)

and matches the LDGP (local DGP) with λ0 = γ ′ψ and
λ1 = β + Ψ ′γ.
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Let xt be policy variables, where changes in their mean alter
E[xT] = δ1 to E[xT+1] = δ2

Actual outcome would be an average change in y of:

E[yT+1] − E[yT ] = β ′(δ2 − δ1) (5)

Let EM denote the expectations operator based on the mis-specified
model, a shift in x produces an average anticipated change of:

EM[yT+1] − EM[yT ] = λ ′1(δ2 − δ1) = (β ′ + γ ′Ψ)(δ2 − δ1) (6)

Resulting in an unexpected location shift of γ ′Ψ(δ2 − δ1) – could lead
to adverse policy effect.

Large risks of under-specified models.
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Four possible economic theory
outcomes

1 Theory exactly correct:
all aspects significant with anticipated signs, no other variables
kept.

2 Theory only part of explanation:
all aspects significant with anticipated signs, but other variables
also kept as substantively relevant.

3 Theory partially correct:
only some aspects significant with anticipated signs, and other
variables also kept as substantively relevant.

4 Theory not correct:
no aspects significant and other variables do all explanation.
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1) Theory exactly correct

Consider a theory model which correctly matches the data-generating
process (DGP) by specifying that:

yt = β
′xt + εt (7)

where εt ∼ IID[0,σ2ε] over t = 1, . . . , T , and εt is independent of the
m strongly exogenous variables {x1, . . . ,xt}, assumed to satisfy:

T−1
T∑
t=1

xtx
′
t

P→ Σxx

which is positive definite, and:

T 1/2
(
β̂− β0

)
=

(
T−1

T∑
t=1

xtx
′
t

)−1

T−1/2
T∑
t=1

xtεt

D→ Nm

[
0,σ2εΣ

−1
xx

]
(8)

where β0 is the constant population parameter.
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Embedding Theory

Consider additional set of k exogenous variables wt may also
influence yt, so postulate the more general model:

yt = β
′xt + γ

′wt + εt (9)

although pop. parameter: γ0 = 0 (because theory exactly correct).

wt can be: known to be exogenous, functions of those, lagged
variables, non-linear, and indicators for outliers or breaks.

Properties of estimators when embedding (correct) theory in
larger model?
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Embedding Theory

xt and wt can be orthogonalized by first computing:

Γ̂ =

(
T∑
t=1

wtx
′
t

)(
T∑
t=1

xtx
′
t

)−1

(10)

and defining the residuals ût by:

wt = Γ̂xt + ût (11)

so that:
T∑
t=1

xtû
′
t = 0 (12)

Then substituting:

yt = β
′xt + γ

′wt + εt = β
′xt + γ

′
(
Γ̂xt + ût

)
+ εt

= β′+xt + γ
′ût + εt, (13)

where β+ = β+ Γ̂′γ. Note that β0+ = β0 because γ0 = 0.

Pretis (Oxford) 1: Theory Embedding Michaelmas 2017 17 / 62



Embedding Theory

xt and wt can be orthogonalized by first computing:

Γ̂ =

(
T∑
t=1

wtx
′
t

)(
T∑
t=1

xtx
′
t

)−1

(10)

and defining the residuals ût by:

wt = Γ̂xt + ût (11)
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Embedding Theory

Consequently, as DGP is yt = β0
′xt + εt:

T 1/2
(
β̃+ − β0

γ̃

)
=

(
T−1

∑T
t=1 xtx

′
t T−1

∑T
t=1 xtû

′
t

T−1
∑T
t=1 ûtx

′
t T−1

∑T
t=1 ûtû

′
t

)−1(
T−1/2

∑T
t=1 xtεt

T−1/2
∑T
t=1 ûtεt

)

=

 (
T−1

∑T
t=1 xtx

′
t

)−1

T−1/2
∑T
t=1 xtεt(

T−1
∑T
t=1 ûtû

′
t

)−1

T−1/2
∑T
t=1 ûtεt


D→ Nm+k

[(
0
0

)
,σ2ε

(
Σ−1

xx 0
0 Σ−1

ww|x

)]
(14)

as
∑T
t=1 xtû

′
t = 0, so distribution of β̃+ in (14) identical to that of β̂

in (8): unaffected by embedding in larger model.
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′
t = 0, so distribution of β̃+ in (14) identical to that of β̂

in (8): unaffected by embedding in larger model.

Pretis (Oxford) 1: Theory Embedding Michaelmas 2017 18 / 62



Theory exactly correct

Only ‘costs’ of selection (embedding theory in broader model) are:

chance retentions of some ût from selection; and

impact on estimated distribution of β̃+ through σ̃2ε.

First can be offset by tight α (level of significance of selection).

Under the null γ0 = 0 an unbiased estimate of σ2ε is:

σ̂2ε = (T −m)−1
T∑
t=1

(
yt − β̃+xt

)2
(15)
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Theory Correct: Simulation Example

yt = β
′xt + γ

′wt + εt, and: wt = Γxt + ût (16)

with: β = 3,γ = 0, Γ = 0.5, T = 50
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2) Theory only part of explanation

Different when theory model is only part of explanation:
defined as all aspects significant with anticipated signs, but other
variables also kept as substantively relevant (some γ0 6= 0).

Two distinct forms of under-specification:
1 omitting relevant functions or lags of variables in LDGP;

avoided by sufficiently general initial model.
2 omitting relevant variables, wt, from the DGP;

induces less useful LDGP–hard to avoid if wt unknown.

In DGP, γ 6= 0 coefficient on xt is β0 + γ0
′Γ̂.

Selection can substantively improve the final model as able to
retain some ût

Recover β by re-estimating non-orthogonalized.
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3) Some of theory part of explanation

Next, when the theory is only partially correct:
some aspects significant with anticipated signs,
but other aspects not significant (some β0 = 0), or ‘wrong’ signed,
with other variables also kept as substantively relevant (some γ0 6= 0).

Under alternative, γ0 6= 0, model will result in biased, inefficient,
possibly non-constant, estimates as:

yt = β′xt+γ
′
(
Γ̂xt + ût

)
+εt =

(
β + γ′Γ̂

)′
xt+γ

′ût+εt (17)

Now forcing xt when selecting from (17) will deliver an incorrect
estimate of β, but some of the ût will be correctly retained, so an

implied estimate of β can be derived from β̃+ = ˜
β + γ′Γ̂, γ̃ and Γ̂.

A better estimate of σ̃2ε should result.

Selection can also help when relevant variables, wt, omitted from
LDGP and breaks occur.
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Theory only part: Simulation

yt = β
′xt + γ

′wt + εt, and: wt = Γxt + ût (18)

with: β = 3,γ = 2, Γ = 0.5
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4) Theory not part of explanation

Finally, theory is now completely incorrect:
no aspects significant and other variables do all explanation (β0 = 0).

Despite forcing xt when β0 = 0, interpretation is awkward as
coefficient of xt is γ′Γ̂.

Can be assessed using β̃+, γ̂, Γ̂. Disastrous outcome if wt omitted
from initial model.

Win-win situation: theory kept if valid and complete;
yet learn when it is not correct –
empirical model discovery embedding theory evaluation.

Interesting case is when N > T for N candidates, so can automatic
model selection work then?
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Theory not part: Simulation

yt = β
′xt + γ

′wt + εt, and: wt = Γxt + ût (19)

with: β = 0,γ = 2, Γ = 0.5
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Selection

Theory-embedding: benefits of extended models

almost costless when theory exactly correct

benefits from learning from data

also valid for endogenous regressors & IV (see appendix)

Still aim for parsimony: reduce general model (large set of xt,wt) to
specific.

Starting point: GUM (General Unrestricted Model)

Target: LDGP (Local Data Generating Process)

Model selection to reach target.
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Selection methods

Many methods for model selection (some frequently used but
ineffective in realistic settings).

Forward selection

Step-wise regression

1-cut elimination

Backward elimination

Information criteria

Lasso

General-to-specific: Gets
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Information criteria

Performance of selection by IC well known for stationary and ergodic
autoregressions:

AIC, SC and HQ penalize log-likelihood by f(N, T) for N
parameters and sample T .

SC (stricter) and HQ consistent:
DGP⊆model selected with prob→ 1 as T →∞ relative to k

Need to estimate all 2N models to properly minimize information
criterion.

SC =
(
−2̂`+N log T

)
T−1

HQ =
(
−2̂`+ 2N log log T

)
T−1

AIC =
(
−2̂`+ 2N

)
T−1
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Information Criteria

Problems with Information Criteria (IC):

IC do not ensure adequate initial model specification (GETS tests
GUM for congruency)

Selection criteria too loose as N→ T

Unclear how to use when N >> T

2N becomes ‘too large’ very quickly

General-to-specific attempts to correct some of these drawbacks.
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Selection

Two costs of selection: costs of inference and search

First inevitable if tests have non-zero null and non-unit rejection
frequencies under alternative
Applies even if commence from LDGP.
Measure costs of inference by RMSE of selecting or conducting
inference on LDGP (alleviated if theory forced)

When a GUM nests the LDGP, additional costs of search:
calculate by increase in RMSEs for relevant variables when
starting from the GUM as against the LDGP, plus those for
retained irrelevant variables
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Two costs of selection

Two costs of selection:

costs of inference (alleviated if theory forced), and

costs of search

First inevitable if tests of non-zero size and non-unit power,
even if commence from data generation process (DGP).

Costs of search: starting at GUM relative to LDGP

pdgpα,i : probability of retaining ith variable in DGP at size α.

1− pdgpα,i is cost of inference (prob. of discarding relevant).

M relevant, m 6M retained.

pgumα,i : probability of retaining ith variable in GUM.

K irrelevant variables, k 6 K retained.

Search costs are
∑M
i=1

(
p
dgp
α,i − pgumα,i

)
+
∑K
j=1

(
p
gum
α,j

)
.
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One-Cut model selection

Consider a perfectly orthogonal regression model:

yt =
∑N

i=1
βizi,t + εt (20)

E[zi,tzj,t] = λi,i for i = j & 0 ∀i 6= j, εt ∼ IN[0,σ2ε] and T >> N.

Order the N sample t2-statistics testing H0: βj = 0:

t2(N) > t2(N−1) > · · · > t2(1)

Cut-off m between included and excluded variables is:

t2(m) > c
2
α > t2(m−1)

Larger values retained: all others eliminated.
Only one decision needed even for N > 1000:
‘goodness of fit’ is never considered.

Maintain average false null retention at one variable by α 6 1/N, with
α declining as T →∞
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More variables than observations

Total number of variables: N = m+ k > T (with theory variables
m << T )

Selection in blocks:

Divide variables into sub blocks (retaining theory in each)

Select variables in each block at α = 1/N overall
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Selection theory

Probabilities of null rejections in t-testing for N irrelevant regressors at
significance level α (critical value cα):

event probability retain
P (| ti| < cα, ∀i = 1, . . .N) (1− α)N 0

P
(
| ti| > cα | | tj| < cα, ∀j 6= i

)
Nα (1− α)N−1 1

...
...

...
P
(
| ti| < cα | | tj| > cα, ∀j 6= i

)
Nα(N−1) (1− α) N− 1

P (| ti| > cα, ∀i = 1, . . .N) αN N

Average number of null variables retained is:

k =

N∑
i=0

i
N!

i! (N− i)!
αi (1− α)N−i = Nα. (21)

For N = 40 when α = 0.01 this yields k = 0.4.
Few spurious variables ever retained
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How easy is it to keep variables?

Keeping relevant:

Consider the power of a t-test to retain relevant variables.

Denote the t-test as t (n,ψ) where n is the degrees of freedom and ψ
is the non-centrality parameter, which is 0 under the null.

H0: βi = 0

To calculate the power to reject the null when E [t] = ψ > 0:

P (t > cα|E [t] = ψ) ≈ P (t−ψ > cα −ψ|H0) .
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Keeping relevant variables

Approximate power if coefficient null only tested once

t-test powers

ψ α P (| t| > cα) P (| t| > cα)
4

1 0.05 0.16 0.001
2 0.05 0.50 0.063
2 0.01 0.26 0.005
3 0.01 0.64 0.168
4 0.05 0.98 0.902
4 0.01 0.91 0.686
6 0.01 1.00 0.997

50–50 chance of retaining when E[t2] = 4 for cα = 2
Only 6% chance of keeping 4 such variables
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Repeated testing

Does repeated testing distort selection?

(a) Severe illness:
more tests increase probability of correct diagnosis.

(b) Mis-specification tests:
if r independent tests τj conducted under null
for small significance level η (critical value cη):

P(
∣∣τj∣∣ < cη | j = 1, . . . , r) = (1− η)r ' 1− rη.

More tests increase probability of false rejection.
Suggests significance level η of 1% or tighter.

Conclude: no generic answer.
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Bias corrections

Hendry and Krolzig (2005):
Selection matters: only retain ‘significant’ variables.
Can correct final estimates for selection given selection rule.

Convenient approximation that:

t
β̂
=
β̂

σ̂
β̂

' β̂

σ
β̂

∼ N

[
β

σ
β̂

, 1

]
= N [ψ, 1]

when non-centrality of t-test is ψ = β
σ
β̂

Using Gaussian approximation:

φ (w) =
1√
2π

exp

(
−
1

2
w2

)
Φ (w) =

1√
2π

∫w
−∞ exp

(
−
1

2
x2
)
dx
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Truncation correction

Doubly-truncated distribution–expected truncated t-value is:

E
[
|t
β̂
| | |t

β̂
| > cα;ψ

]
= ψ∗ (22)

so observed |t|-value is unbiased estimator for ψ∗. Thus, observe ψ∗

when true non-centrality is ψ.

Sample selection induces:

ψ∗ = ψ+
φ(cα −ψ) − φ(−cα −ψ)

1−Φ(cα −ψ) +Φ(−cα −ψ)
= ψ+ r (ψ, cα) (23)

As know mapping ψ∗ → ψ, can correct by ‘inversion’:
ψ = ψ∗ − r (ψ, cα), albeit iteratively as r depends on ψ.

Applies as well to correcting β̃ once ψ is known: for β > 0:

E
[
β̃ | β̃ > σ

β̃
cα

]
= β

(
1+

r (ψ, cα)

ψ

)
= β

(
ψ∗

ψ

)
(24)
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Estimating the bias correction

Estimate ψ∗ from t
β̃

then iteratively solve for ψ from (23):

ψ = ψ∗ − r (ψ, cα) (25)

so replace r(ψ, cα) in (25) by r(t
β̃
, cα), and ψ∗ by t

β̃
:

ψ̃ = t
β̃
− r
(
t
β̃
, cα

)
, then ˜̃

ψ = t
β̃
− r
(
ψ̃, cα

)
(26)

leading to the bias-corrected parameter estimate:

˜̃
β = β̃

(˜̃
ψ/t

β̃

)
. (27)

from inverting (24).
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Monte Carlo simulations for N = 1000

Now illustrate 1-cut by simulating selection of 10 relevant from 1000
candidate variables.
DGP is given by:

yt = β1z1,t + · · ·+ β10z10,t + εt, (28)

zt ∼ IN1000 [0,Ω] , (29)

εt ∼ IN [0, 1] , (30)

where z′t = (z1,t, · · · , z1000,t).
Set Ω = I1000 for simplicity, keeping regressors fixed between
experiments

T = 2000 observations.

DGP coefficients, β, and non-centralities, ψ, in table 1

Also theoretical powers of t-tests on individual coefficients.
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Non-centralities

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10
β 0.06 0.08 0.09 0.11 0.13 0.14 0.16 0.17 0.19 0.21
ψ 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
P0.01 0.28 0.47 0.66 0.82 0.92 0.97 0.99 1.00 1.00 1.00
P0.001 0.10 0.21 0.38 0.55 0.76 0.89 0.96 0.99 1.00 1.00

Table : Coefficients βi, non-centralities ψi, theoretical retention probabilities,
Pα,i.

GUM contains all 1000 regressors and intercept:

yt = β0 + β1z1,t + · · ·+ β1000z1000,t + ut, t = 1, . . . , 2000.

DGP has first n = 10 variables relevant,
so 991 variables irrelevant in GUM (with intercept).
Report outcomes for α = 1% and 0.1%. M = 1000 replications,
where 1(·) is indicator.
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Gauge and potency

‘gauge’ denotes empirical null retention frequency.
‘potency ’ is average non-null retention frequency.

retention rate: p̃k = 1
M

∑M
i=1 1(β̃k,i 6=0)

, k = 0, . . . ,N,

potency: = 1
n

∑n
k=1 p̃k,

gauge: = 1
N−n+1

(
p̃0 +

∑N
k=n+1 p̃k

)
.

All retained variables significant at cα by design in 1-cut.
But not necessarily the case with automated Gets.
Irrelevant variables may be retained because of:
(a) diagnostic checking when a variable is insignificant,
but deletion makes a diagnostic test significant, or
(b) with encompassing, a variable can be individually insignificant, but
not jointly with all variables deleted so far.
Simulation gauges and potencies recorded in table 2.
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Simulation outcomes

α Gauge Potency Theory power
1% 1.01% 81% 81%
0.1% 0.10% 69% 68%

Table : Potency and gauge for 1-cut selection with 1000 variables.

Gauges not significantly different from nominal sizes α:
selection is not ‘oversized’ even with 1000 variables

Potencies close to average theory powers of 0.811 and 0.684.

Close match between theory and evidence even when selecting just
10 relevant regressors from 1000 variables.
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Calculating MSEs

Also report MSEs after model selection.

β̂k,i is OLS estimate of coefficient on xk,t in GUM for replication i.
β̃k,i is OLS estimate after model selection
β̃k,i = 0 when zk,t not selected in final model.
Calculate following MSEs:

MSEk = 1
M

∑M
i=1

(
β̂k,i − βk

)2
,

UMSEk = 1
M

∑M
i=1

(
β̃k,i − βk

)2
,

CMSEk =

∑M
i=1

[
(β̃k,i−βk)

2
·1

(β̃k,i 6=0)

]
∑M
i=1 1(β̃k,i 6=0)

,
(
β2
k if

∑M
i=1 1(β̃k,i 6=0)

= 0
)

Unconditional MSE (UMSE) substitutes β̃k,i = 0 when a variable is
not selected.
Conditional MSE (CMSE) is computed over retained variables only.
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Simulation MSEs

Monte Carlo 
Theory

1 2 3 4 5 6 7 8 9 10

0.25

0.50

0.75
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Retention of relevant variables at 1%

Monte Carlo 
Theory

Monte Carlo 
Theory

1 2 3 4 5 6 7 8 9 10

0.25

0.50

0.75

1.00
Retention of relevant variables at 0.1%

xkt

Monte Carlo 
Theory

xkt

Figure shows that retention rates for individual relevant variables are
as expected from the theory.
Consider impact of bias-correcting for selecting just those variables
where |t| > cα
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Simulation MSEs

Impact of bias corrections on retained irrelevant and relevant variables,
for N = 1000 and n = 10 in (20).

α 1% 0.1% 1% 0.1%
average CMSE over average CMSE over

990 irrelevant variables 10 relevant variables
uncorrected β̃ 0.84 1.23 1.0 1.4

β after correction 0.38 0.60 1.2 1.3

Table : Average CMSEs, times 100, for retained relevant and irrelevant
variables (excluding β0), with and without bias correction.

Greatly reduces MSEs of irrelevant variables in both
unconditional and conditional distributions.

Coefficients of retained variables with |t| 6 cα are not bias
corrected–insignificant estimates set to zero.
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Implementing bias correction

Bias corrects closely, not exactly, for relevant: over-corrects for
some t-values.

Some increase in MSEs of relevant variables.
Correction exacerbates downward bias in unconditional estimates
of relevant coefficients & increases MSEs slightly.

No impact on ‘bias’ of estimated parameters of irrelevant
variables as their βi = 0, so unbiased with or without selection

But remarkable decrease in MSEs of irrelevant variables

First ‘free lunch’ of new approach.
Obvious why in retrospect–most correction for |t| near cα, which
occurs for retained irrelevant variables.
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Bias correcting cond. distrib. at 5%
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(d) Intercept, ψ=0
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Application

DHSY (1978) re-visited:
UK consumption and income (quarterly: 1958:2 – 1976:2) with
seasonals Sj.

Theory – permanent income hypothesis (PIH):

ct = 0.60
(0.07)

ct−1 + 0.87
(0.14)

+ 0.31
(0.05)

it − 0.12
(0.01)

S1 − 0.01
(0.005)

S2 − 0.03
(0.003)

S3

AR 1-5 test: F(5,66) = 9.6825 [0.0000]**
ARCH 1-4 test: F(4,69) = 2.7946 [0.0327]*
Normality test: Chiˆ2(2) = 5.1375 [0.0766]
Hetero test: F(7,69) = 3.9719 [0.0011]**
RESET23 test: F(2,69) = 0.57147 [0.5673]
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Embed Theory in broader GUM

Lags (1-5), inflation ∆4pt, tax dummy Dt from DHSY. Orthogonalized
w.r.t theory variables (’).

ct = 0.60
(0.07)

ct−1 + 0.87
(0.14)

+ 0.31
(0.05)

it − 0.12
(0.01)

S1 − 0.01
(0.005)

S2 − 0.03
(0.003)

S3

− 0.04
(0.09)

c ′t−2 + 0.05
(0.09)

c ′t−3 + 0.72
(0.09)

c ′t−4 − 0.02
(0.12)

c ′t−5

+ 0.15
(0.05)

i ′t−1 − 0.03
(0.05)

i ′t−2 + 0.04
(0.04)

i ′t−3 − 0.09
(0.05)

i ′t−4 − 0.19
(0.05)

i ′t−5

− 0.33
(0.08)

∆4p
′
t + 0.18

(0.08)
∆4p

′
t−1 + 0.002

(0.007)
D ′t

AR 1-5 test: F(5,46) = 1.5562 [0.1914]
ARCH 1-4 test: F(4,61) = 2.9801 [0.0259]*
Normality test: Chiˆ2(2) = 0.080842 [0.9604]
Hetero test: F(31,37) = 1.4697 [0.1307]
RESET23 test: F(2,49) = 4.9168 [0.0113]*

Joint test of orthog.: F(12, 51) = 13.114[0.0000]∗∗
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Reduce through selection

Model selection target size 1%, N = 18 (expect 0.01× 18 spurious):

ct = 0.86
(0.021)

ct−4 − 0.004
(0.0001)

S1

+0.25
(0.03)

it + 0.20
(0.05)

it−1 − 0.31
(0.03)

it−5

−0.33
(0.08)

∆4pt + 0.26
(0.07)

∆4pt−1 + 0.008
(0.002)

Dt

Can be written as equilibrium-correction, closely resembles DHSY.
PIH but also allow for other effects that lie outside theory.

– Bias-correcting coefficients (technically valid for orthog. only):

ct = 0.86
(0.021)

ct−4 − 0.002
(0.0001)

S1

+0.25
(0.03)

it + 0.20
(0.05)

it−1 − 0.31
(0.03)

it−5

−0.33
(0.08)

∆4pt + 0.22
(0.07)

∆4pt−1 + 0.007
(0.002)

Dt
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Conclusions

Theory embedding and model discovery

Theories incomplete & risks of under-specification
Embedding theory in larger more general models

(Almost) costless when theory exactly correct
Learning from data under alternative

Simplify general models to parsimonious specific ones
Easy to control false-positives
Challenge to retain relevant
Bias-correct for selection
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Appendix

Appendix

‘Theory embedding’ with Endogenous regressors
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Endogenous Regressors

Results generalize directly to instrumental variables

Some regressors not predetermined (endog.) and theory model is still:

yt = β′xt + εt (31)

where εt ∼ IN[0,σ2ε], now ε is independent of them > n instrumental
variables z1, . . . , zt where (m+ n < T).
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Endogenous Regressors

The DGP if theory is correct has the form:

xt = Πzt + ζt (32)

yt = β ′Πzt + ηt (33)

where (ηt, ζt) are IID[0,Ω] with Ω =

(
σ2η σ ′ηζ
σζη Ωζ

)
and (ηt, ζt)

independent of z1, . . . , zt but εt = yt − β ′xt = ηt − β
′ζt correlated

with xt as

Cov[xtεt] = σζη − Ωζβ (34)
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Endogenous Regressors

Instrumental variables estimation given by two-stage least squares:

β̂ = β0 +

( T∑
t=1

xtz
′
t

)(
T∑

t=1

ztz
′
t

)−1( T∑
t=1

ztx
′
t

)−1

×

(
T∑
t=1

xtz
′
t

)(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

ztεt (35)

so that:
T 1/2

(
β̂− β0

)
D→ Nm

[
0,σ2εQ

−1
]

(36)

where we assume positive definite Q:

Q = plim
T→∞

( 1

T

T∑
t=1

xtz
′
t

)(
1

T

T∑
t=1

ztz
′
t

)−1(
1

T

T∑
t=1

ztx
′
t

)
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Endogenous Regressors

Let:

Π̂ =

(
1

T

T∑
t=1

xtz
′
t

)(
1

T

T∑
t=1

ztz
′
t

)−1

and define:

x̂t = Π̂zt with ξ̂t = xt − x̂t =
(
Π − Π̂

)
zt + ξt,

then a 2SLS reformulation that is algebraically convenient is:

yt = β
′x̂t + et (37)

where:
et = εt + β

′ξ̂t = ηt + β
′(ξt − ξ̂t)
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Endogenous Regressors

so that:

plim
T→∞

1

T

T∑
t=1

x̂tet = plim
T→∞ Π̂

1

T

T∑
t=1

zt

(
ηt + β

′
(
ξt − ξ̂t

))
= 0

Now include an additional set of k candidate exogenous variables wt

beyond theory:

yt = β
′Πzt + γ

′wt + ηt (38)

xt = Πzt + ξt

where γ0 = 0, and the xt are retained. Since γ0 = 0, when the
x̂t = Π̂zt and wt are orthogonalized as before:

yt = β
′x̂t + γ

′wt + ηt + β
′
(
ξt − ξ̂t

)
= β′x̂t + γ

′
(
Γ̂x̂t + ût

)
+ et = β

′
+x̂t + γ

′ût + et (39)
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Endogenous Regressors

When theory model is the DGP, by orthogonality:

T 1/2
(
β̃+ − β0

γ̃

)

=

(
T−1

∑T
t=1 x̂tx̂

′
t T−1

∑T
t=1 x̂tû

′
t

T−1
∑T
t=1 ûtx̂

′
t T−1

∑T
t=1 ûtû

′
t

)−1(
T−1/2

∑T
t=1 x̂tet

T−1/2
∑T
t=1 ûtet

)

=

 (
T−1

∑T
t=1 x̂tx̂

′
t

)−1
T−1/2

∑T
t=1 x̂tet(

T−1
∑T
t=1 ûtû

′
t

)−1
T−1/2

∑T
t=1 ûtet


D→ Nm+k

[(
0
0

)
,σ2η

(
Σ−1

x̂x̂ 0

0 Σ−1
ww|z

)]
(40)

Estimator β̃+ is again identical to the estimator β̂ in theory-only model,
independently of the inclusion or exclusion of any or all of the ût.
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