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Non-linearities

Motivation:

Non-linearity inherent in economics (and many other fields)

Linear representation is a simplifying assumption

If incorrect, model will be mis-specified

Objective:

Test for evidence of non-linearity

Commence with general non-linear approximation.
Investigate large class of functions: polynomials one possibility:

needs to be identified and congruent;
approximate wide range of non-linear models;
maintains linearity in the parameters;
easy to orthogonalize.

But non-generalized polynomials not invariant to transformations

Establish operating characteristics

Pretis (Oxford) 9: OxMetrics March 2016 2 / 42



Aspects of non-linear selection

Non-linear model selection:

Testing for non-linearity;

Caveat: ...like going to the zoo to look at non-elephants1

Mimicking a near-orthogonal representation;

Avoiding extreme observations leading to non-normality –
impulse-indicator saturation and step-indicator saturation;

Preventing excess retention of irrelevant variables –
choice of significance level.

A successful algorithm requires the synthesis of all developments
to be implemented

1With thanks to Anders Rahbek.
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Example: Non-linearity and Shifts
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Non-linear algorithm

Assume LDGP is:

yt = f (z1,t, . . . , zk,t; θ) + εt where εt ∼ IN
[
0, σ2ε

]
(1)

for t = 1, . . . , T , with θ ∈ Θ ⊆ Rk.

Problems include:

specification of functional form, f (·);
identification of θ;

selection of relevant variables, z′t = (z1,t, . . . zk,t) from available
candidates (z1,t, . . . zK,t) where K ≥ k.
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Gets approach

Specify a GUM that nests the LDGP to ensure the initial formulation
is congruent:

yt =

K∑
j=1

βj

P∑
p=1

hp (z1,t, . . . zK,t) + νt where νt ∼ IN
[
0, σ2ν

]
(2)

k relevant and K − k irrelevant variables.
P approximation bases.
Test for non-linearity to see if it is viable to reduce to:

yt =

K∑
j=1

βjzj,t + νt. (3)

If do not reject, proceed with linear GUM.
If reject, non-linearity is established.
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Gets approach

2 cases:

1 GUM nests LDGP
Approximation is exact, f (·) ⊆ hp (·)
Congruency is meaningful and testable, even with more variables
than observations
Consistent model selection: α→ 0 as T →∞ so irrelevant
variables eventually retained with prob 0.
Functional form concerns whether more parsimonious
representation found.

2 GUM doesn’t nest LDGP but is approximation
Not clear what consistency means – test of approx.
Cannot prove consistency as non-nested LDGP.
Consistency feasible with encompassing test stage.
Congruency still operational.
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Non-linear Algorithm

Commence with general approximation hp (zi):

yt = β′zt + γ′g(wt) +

T∑
t=1

δt1{t=ti} + vt t = 1, . . . , T (4)

where vt ∼ NID
(
0, σ2v

)
.

zt = (z1,t, . . . , zK,t)
′ is (K × 1) vector of potentially relevant variables.

g (wt) is (M × 1) vector of non-linear transformations on standardized
potentially relevant variables or factors, wt:

wj,t =
zj,t − zj
σzj

j = 1, . . . ,K, or wt = Λ1/2H′ (zt − z) (5)

∑T
t=1 1{t=ti} is a set of saturating indicators.
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Non-linear approximations

Key question: What g (wt) specification?
Many possible approximations:

Polynomials, Hermite, Chebyshev, . . .

Fourier series approximations

Asymptotic series

Logistic functions

Range of different bases – different shapes of functions.
Ability to parsimoniously approximate depends on LDGP.
Suggests many bases but only first few terms of each.
Preferable to one base with longer approximation.
Issue: approximations not orthogonal – could ‘cancel’, hence selection.
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Non-linear approximations

γ′g(wt) =

K∑
j=1

K∑
l=j

βjlwj,twl,t [2nd order polynomials]

+

K∑
j=1

K∑
l=j

K∑
q=l

βjlqwj,twl,twq,t [3rd order polynomials]

+

K∑
j=1

αjj

{
wj,te

−|wj,t|
}

[exponentials] (6)
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Non-linear functions
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Selection

Selection undertaken on (11):

ŷt =

k∗∑
j=1

β̂jzj,t +

m∗∑
j=1

γ̂jgj (wt) +

q∑
i=1

δ̂i1{t=ti} (7)

k∗ = no. linear regressors retained;
m∗ = no. non-linear transformations retained;
q = indicators retained.
Final stage – test approximation (7) against preferred functional form,
ψ (zt) (e.g. LSTAR, theory-motivated etc).
Encompassing test: H0 : γj = 0,∀j:

yt =

k∗∑
j=1

β̂jzj,t +

m∗∑
j=1

γjg (wt) +

q∑
i=1

δi1{t=ti} + λ′ψ (zt) + ηt. (8)
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Route map

We shall examine each aspect in turn before undertaking selection
jointly.
In practice, all aspects should be implemented jointly.

1 Test for non-linearity

2 Outlier detection

3 Non-linear functions

4 Joint selection using a parsimonious non-linear function

5 Use of SIS to obtain an encompassing model
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Automatic non-linear extensions

Test for non-linearity in general linear model by low-dimensional
portmanteau test in Castle and Hendry (2010) uses cubics of principal
components wt of the zt.

Let zt ∼ Dn [µ,Ω], where Ω =HΛH ′ with H ′H = In.

Then w∗t =H
′zt ⇒ w∗t ∼ Dn [H

′µ,Λ]. Empirically:

Ω̂ = T−1
∑T

t=1(zt − z)(zt − z)′ = ĤΛ̂Ĥ ′ so that

wt = Λ̂−1/2Ĥ ′(zt − z) leading to wt ∼
app

Dn [0, I].

If test rejects, create g(wt), otherwise g(zt) = zt: presently,
implemented general cubics with exponential functions.
u1,i,t = w2

i,t; u2,i,t = w3
i,t; u3,i,t = wi,te

−|wi,t|.

When Ω is non-diagonal, each wi,t is a linear combination of every
zi,t, so w2

i,t involves squares and cross-products of every zi,t etc.
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Apply to model formulation

Advantages of test are:

Low dimensionality–may entail more non-linear functions than
observations;

No collinearity between elements of wt;

Includes most important sources of departure from linearity, e.g.
asymmetry.

Number of potential regressors for cubic polynomials is:

MK = K (K + 1) (K + 5) /6.

Explosion in number of terms as K = r × (s+ 1) increases:

K 1 2 3 4 5 10 15 20 30 40
MK 3 9 19 30 55 285 679 1539 5455 12300

Quickly reach huge MK : but only 3K if use wki,t−j .
Later address perfect collinearity between zt and wt.
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Non-Linear Example 1

Non-Linear Model Selection in Practice

Load data “nonlin nobreak example.in7”

Batch file: “nonlinear data example.fl”

Artificial data with non-linear DGP:

DGP: yt = β1x1,t + β2x
2
1,t + β3x

3
1,t + β4x

2
2,t + εt (9)

where E[ψi] = tβi = 3 for i = 1, . . . , 4, and εt ∼ N(0, 1).

Estimate the mis-specified model:

yt = β0 +

10∑
i=1

βixi,t (10)
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Non-linearity test

The non-linearity index test applied to a linear model of yt, where the
regressors include an intercept, x1,t to x10,t:

The test is significant at p = 0.008 with F(30, 59) = 2.10.

Specify GUM → Estimate model.
Test → Index test for non-linearity.
Quadratic, cubic and exponential principal components included.

Caveat: model also fails other diagnostics – must jointly test for
outliers using IIS/SIS (Castle, Doornik, Hendry, and Pretis (2015)).
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Construct Non-linear transformations

K=10 variables → 285 regressors if all non-linear combinations
(highly correlated)

Principal components: low dimensionality

Create principal components of set of explanatory variables:

(x1,t, . . . , x10,t)

Other models → Descriptive statistics using PcGive.
Select regressors and choose Principal component analysis. Make sure
you select the Save components in database option.
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Construct Non-linear transformations

Compute squares and cubics of principal components using
calculator/algebra:

PC1sq = PC1^2;

PC1cub = PC1^3;

PC1exp = PC1*exp(-abs(PC1));

. . .

Specify GUM (up to PC3) and select at tight significance level,
pα = 0.01
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Selection Results

Model Selection using non-linear transformations of principal
components:

Coefficient Std.Error t-value

x1 1.50656 0.1235 12.2

PC1_sq 0.160795 0.04795 3.35

PC3_sq 0.147337 0.05937 2.48

AR 1-2 test: F(2,95) = 0.77799 [0.4622]

ARCH 1-1 test: F(1,98) = 0.027482 [0.8687]

Normality test: Chi^2(2) = 3.6125 [0.1643]

Hetero test: F(6,93) = 2.8462 [0.0137]*

Hetero-X test: F(9,90) = 5.8234 [0.0000]**

RESET23 test: F(2,95) = 13.508 [0.0000]**
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y Fitted 

0 10 20 30 40 50 60 70 80 90 100

-2.5

0.0

2.5

5.0

7.5

10.0
Outlier?y Fitted 

r:y (scaled) 

0 10 20 30 40 50 60 70 80 90 100

-2

0

2

r:y (scaled) 

Must tackle non-linearities and shifts jointly!
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Apply Indicator Saturation

Extend GUM to include Step-Indicators, select at pα=0.01:

yt = β′zt + γ′g(wt) +

T∑
t=1

δt1{t≤ti} + vt t = 1, . . . , T (11)

Results:

Coefficient Std.Error t-value t-prob

x1 1.34988 0.1223 11.0 0.0000

PC1_sq 0.142090 0.04767 2.98 0.0036

S1:66 -4.94129 1.138 -4.34 0.0000

S1:67 5.15142 1.145 4.50 0.0000

AR 1-2 test: F(2,94) = 1.3612 [0.2614]

ARCH 1-1 test: F(1,98) = 0.29562 [0.5879]

Normality test: Chi^2(2) = 1.0758 [0.5840]

Hetero test: F(5,93) = 0.54736 [0.7399]

Hetero-X test: F(6,92) = 0.58405 [0.7422]

RESET23 test: F(2,94) = 4.0001 [0.0215]*
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Tackling non-linearities and shifts jointly.
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SIS vs true-non-linearity

So far: non-linear DGP approximated by non-linear principal
component + step-shifts.

Now: test against preferred functional form

Final stage – test approximation against preferred functional form,
ψ (zt) (e.g. LSTAR, theory-motivated etc).

Encompassing test: H0 : γj = 0,∀j:

yt =

k∗∑
j=1

β̂jxj,t +

m∗∑
j=1

γjg (wt) +

q∑
i=1

δi1{t≤ti} + λ′ψ (xt) + ηt.

Use ‘theory motivated’ specification:

λ′ψ (xt) = λ1x
2
1,t + λ2x

3
1,t + λ3x

2
2,t
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Preferred functional form:

Encompassing Model:

yt = β1x1,t + γ1w
2
1,t + δ1St=66 + δ2St=67 + λ1x

2
1,t + λ2x

3
1,t + λ3x

2
2,t

Test for excluding:

[0] = PC1_sq

[1] = S1:66

[2] = S1:67

Subset F(3,93) = 0.49576 [0.6861]

Detected shifts drop out when non-linear functional form
specified.
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Simulation Evidence

Effect of using SIS when selecting from GUM nesting a
non-linear DGP

Retention at 1% (x’s selected over)

without SIS with SIS
x, ψ = 3 0.68 0.63
x2, ψ = 3 0.68 0.56
x3, ψ = 3 0.67 0.62

SIS gauge - 0.03

Little effect when DGP is truly non-linear.
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Non-Linear Example 2: Breaks

So far:

Automatic non-linear extensions
SIS steps not retained if DGP truly non-linear

Now:

Spurious non-linearity due to shifts
Load dataset: “nonlin break example.in7”
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Non-Linear Example 2: Breaks

Select model at pα = 0.01 starting from GUM:

yt = β1x1,t + β2x
2
1,t + β3x

3
1,t +

5∑
i=2

λixi,t

Selection results:

Coefficient Std.Error t-value t-prob

x1 -13.4025 1.139 -11.8 0.0000

x3 0.0879400 0.1070 0.822 0.4131

x1_sq 11.9787 1.437 8.33 0.0000

x1_cub -2.66853 0.4369 -6.11 0.0000

AR 1-2 test: F(2,94) = 0.80101 [0.4519]

ARCH 1-1 test: F(1,98) = 1.0423 [0.3098]

Normality test: Chi^2(2) =0.0010385 [0.9995]

Hetero test: F(7,92) = 2.6783 [0.0144]*

Hetero-X test: F(11,88) = 1.6932 [0.0880]

RESET23 test: F(2,94) = 10.153 [0.0001]**
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Non-Linear Example 2: Breaks
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Spurious non-linearity?
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Apply SIS

Start with GUM including step-indicators:

yt = β1x1,t + β2x
2
1,t + β3x

3
1,t +

5∑
i=2

λixi,t +

q∑
i=1

δi1{t≤ti}

Yields:

Coefficient Std.Error t-value t-prob

S1:36 -3.82795 0.1463 -26.2 0.0000

AR 1-2 test: F(2,97) = 0.060408 [0.9414]

ARCH 1-1 test: F(1,98) = 0.30641 [0.5812]

Normality test: Chi^2(2) = 0.18369 [0.9122]

RESET23 test: F(1,98) =6.4913e-028 [1.0000]

Which nearly coincides with the DGP:

yt = µ+ λ1t≥35 + εt (12)
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Step-shift identified, spurious non-linearity removed.
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Simulation Evidence with Breaks

SIS when non-linear transformations spuriously approximate a
break of magnitude λ1 in a linear DGP:

Retention at 1% (x’s selected over)

λ1 = 2σε λ1 = 4σε
without SIS with SIS without SIS with SIS

x, ψ = 0 0.41 0.02 0.83 0.02
x2, ψ = 0 0.66 0.02 0.96 0.02
x3, ψ = 0 0.3 0.02 0.83 0.01
T1 step - 0.62 - 0.94

SIS gauge - 0.02 - 0.02
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Non-Linear Modelling

General Approach – Model Discovery Extensions:

Automatic non-linear extensions

Jointly with indicator saturation

SIS as insurance mechanism:

Non-linearities present: little effect of using SIS, steps not
retained.

Unknown shifts: identified through SIS rather than attributed to
non-linearities
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Application of Non-Linear Modelling

Global SST – Climate/Weather Indicator
Shape of trend? Breaks in series? El Niño Southern Oscillation?
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SST: Model Setup

Model:
yt = f(zt) + βxt + δD + εt (13)

T=131 (1877-2007)

y= Global Mean SST Anomalies (C) relative to 1950-79

z=trend, x= Southern Oscillation Index (SOI) (atm. pressure at
SL)

N = 131 + 6 = 137 variables
Specification:

SIS, pα = 0.01 (1%)

Non-linear trend: B-spline basis (5 degree polynomial)
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SST: SIS Results (Fitted)

SST Fitted 
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Multiple breaks, note:

1940, δ̂1 = 0.45∗∗∗C (se=0.04)

1945, δ̂2 = −0.31∗∗∗C (se=0.04)
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SST: Interpreting the structural break

WWII: 1941/1942 Measurements: buckets to engine intake
Danger of measurements (light)
Americans joined 1941/1942

Post-WWII: Partly changed back
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SST: Interpreting the structural break

WWII: 1941/1942 Measurements: buckets to engine intake
Danger of measurements (light)
Americans joined 1941/1942

Post-WWII: Partly changed back

Buckets: cold bias (≈ 0.3C) (Matthews, 2012)

SIS: δ̂1 = 0.45 (±0.04)
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SST: Linear & Break Component

SOI Effect (linear)

SIS: β̂ = −0.004∗∗∗ (se=0.001)

Theory consistent: SOI > 0 (La Niña) → lower temp. (hiatus?!)

Breaks

Could correct SST record for ’bucket bias’

Non-linearities

Non-linear transformations of trend retained
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Conclusions

Automatic selection well developed for linear models

Algorithm can be extended to handle non-linear functions – not
yet automated

Test of functional form against linear

Low order approximations for a range of bases

Polynomials and exponentials × polynomials very general

Indicator saturation to remove extreme observations/level shifts

Number of potential non-linear variables large: choice of
significance level

Methods for more variables than observations

Encompassing tests against specific functional forms

Complexity of empirical modeling – but theory consistent,
empirically congruent model can be developed.
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Conclusions

Joint modelling of dynamics, location shifts, relevant variables
and non-linearities essential.
Automatic model selection despite N > T seems a viable
approach to tackling all complications jointly.

IIS and SIS do not preclude finding non-linearites, and
non-linearities removed indicators found in linear specifications.

Not removing the large outliers could hide the presence of other
variables, including the non-linearities.

Indicator saturation: insurance mechanism in non-linear
modelling.
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