

Econometrics Spring School 2016 Econometric Modelling

Jurgen A Doornik, David F. Hendry, and Felix Pretis

George-Washington University

March 2016

Lecture 9: Non-linear Model Selection

Motivation:

- Non-linearity inherent in economics (and many other fields)
- Linear representation is a simplifying assumption
- If incorrect, model will be mis-specified

Objective:

- Test for evidence of non-linearity
- Commence with general non-linear approximation. Investigate large class of functions: polynomials one possibility:
 - needs to be identified and congruent;
 - approximate wide range of non-linear models;
 - maintains linearity in the parameters;
 - easy to orthogonalize.
- But non-generalized polynomials not invariant to transformations

Establish operating characteristics

Pretis (Oxford)

Non-linear model selection:

- Testing for non-linearity;
 - $\bullet\,$ Caveat: …like going to the zoo to look at non-elephants^1
- Mimicking a near-orthogonal representation;
- Avoiding extreme observations leading to non-normality impulse-indicator saturation and step-indicator saturation;
- Preventing excess retention of irrelevant variables choice of significance level.

A successful algorithm requires the synthesis of all developments to be implemented

¹With thanks to Anders Rahbek.

Pretis (Oxford)

Assume LDGP is:

 $y_t = f(z_{1,t}, \dots, z_{k,t}; \theta) + \epsilon_t \text{ where } \epsilon_t \sim \mathsf{IN}\left[0, \sigma_\epsilon^2\right]$ (1)

for $t = 1, \ldots, T$, with $\theta \in \Theta \subseteq \mathbb{R}^k$.

Problems include:

- specification of functional form, $f(\cdot)$;
- identification of θ ;
- selection of relevant variables, $\mathbf{z}'_t = (z_{1,t}, \dots z_{k,t})$ from available candidates $(z_{1,t}, \dots z_{K,t})$ where $K \ge k$.

Specify a GUM that nests the LDGP to ensure the initial formulation is congruent:

$$y_{t} = \sum_{j=1}^{K} \beta_{j} \sum_{p=1}^{P} h_{p} \left(z_{1,t}, \dots z_{K,t} \right) + \nu_{t} \text{ where } \nu_{t} \sim \mathsf{IN} \left[0, \sigma_{\nu}^{2} \right]$$
 (2)

k relevant and K - k irrelevant variables.

P approximation bases.

Test for non-linearity to see if it is viable to reduce to:

$$y_t = \sum_{j=1}^{K} \beta_j z_{j,t} + \nu_t.$$
 (3)

If do not reject, proceed with linear GUM. If reject, non-linearity is established.

Pretis (Oxford)

2 cases:

GUM nests LDGP

Approximation is exact, $f(\cdot) \subseteq h_p(\cdot)$ Congruency is meaningful and testable, even with more variables than observations Consistent model selection: $\alpha \to 0$ as $T \to \infty$ so irrelevant variables eventually retained with prob 0. Functional form concerns whether more parsimonious representation found.

GUM doesn't nest LDGP but is approximation Not clear what consistency means – test of approx. Cannot prove consistency as non-nested LDGP. Consistency feasible with encompassing test stage. Congruency still operational.

Commence with general approximation $h_p(\mathbf{z}_i)$:

$$y_t = \beta' \mathbf{z}_t + \gamma' \mathbf{g}(\mathbf{w}_t) + \sum_{t=1}^T \delta_t \mathbf{1}_{\{t=t_i\}} + v_t \quad t = 1, \dots, T$$
 (4)

where $v_t \sim \text{NID}(0, \sigma_v^2)$. $\mathbf{z}_t = (z_{1,t}, \dots, z_{K,t})'$ is $(K \times 1)$ vector of potentially relevant variables. $\mathbf{g}(\mathbf{w}_t)$ is $(M \times 1)$ vector of non-linear transformations on standardized potentially relevant variables or factors, \mathbf{w}_t :

$$w_{j,t} = \frac{z_{j,t} - \overline{z}_j}{\sigma_{z_j}} \qquad j = 1, \dots, K, \quad \text{or} \quad \mathbf{w}_t = \mathbf{\Lambda}^{1/2} \mathbf{H}' \left(\mathbf{z}_t - \overline{\mathbf{z}} \right) \quad (5)$$

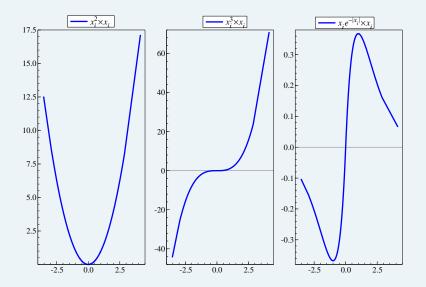
 $\sum_{t=1}^{T} \mathbf{1}_{\{t=t_i\}}$ is a set of saturating indicators.

Key question: What $\mathbf{g}(\mathbf{w}_t)$ specification? Many possible approximations:

- Polynomials, Hermite, Chebyshev, ...
- Fourier series approximations
- Asymptotic series
- Logistic functions

Range of different bases – different shapes of functions. Ability to parsimoniously approximate depends on LDGP. Suggests many bases but only first few terms of each. Preferable to one base with longer approximation. Issue: approximations not orthogonal – could 'cancel', hence selection.

$$\gamma' \mathbf{g}(\mathbf{w}_{t}) = \sum_{j=1}^{K} \sum_{l=j}^{K} \beta_{jl} w_{j,t} w_{l,t} \qquad [2^{nd} \text{ order polynomials}] \\ + \sum_{j=1}^{K} \sum_{l=j}^{K} \sum_{q=l}^{K} \beta_{jlq} w_{j,t} w_{l,t} w_{q,t} \qquad [3^{rd} \text{ order polynomials}] \\ + \sum_{j=1}^{K} \alpha_{jj} \left\{ w_{j,t} e^{-|w_{j,t}|} \right\} \qquad [exponentials] \qquad (6)$$



Selection undertaken on (11):

$$\widehat{y}_t = \sum_{j=1}^{k^*} \widehat{\beta}_j z_{j,t} + \sum_{j=1}^{m^*} \widehat{\gamma}_j g_j \left(\mathbf{w}_t \right) + \sum_{i=1}^q \widehat{\delta}_i \mathbf{1}_{\{t=t_i\}}$$
(7)

 $k^* =$ no. linear regressors retained;

 $m^* =$ no. non-linear transformations retained;

q = indicators retained.

Final stage – test approximation (7) against preferred functional form, $\psi(\mathbf{z}_t)$ (e.g. LSTAR, theory-motivated etc). Encompassing test: $H_0: \gamma_j = 0, \forall j$:

$$y_{t} = \sum_{j=1}^{k^{*}} \widehat{\beta}_{j} z_{j,t} + \sum_{j=1}^{m^{*}} \gamma_{j} g\left(\mathbf{w}_{t}\right) + \sum_{i=1}^{q} \delta_{i} \mathbf{1}_{\{t=t_{i}\}} + \lambda' \psi\left(\mathbf{z}_{t}\right) + \eta_{t}.$$
 (8)

We shall examine each aspect in turn before undertaking selection jointly.

In practice, all aspects should be implemented jointly.

- **1** Test for non-linearity
- Outlier detection
- On-linear functions
- Joint selection using a parsimonious non-linear function
- **5** Use of SIS to obtain an encompassing model

Test for non-linearity in general linear model by low-dimensional portmanteau test in Castle and Hendry (2010) uses cubics of principal components w_t of the z_t .

Let $\boldsymbol{z}_t \sim \mathsf{D}_n\left[\boldsymbol{\mu}, \boldsymbol{\Omega}\right]$, where $\boldsymbol{\Omega} = \boldsymbol{H}\boldsymbol{\Lambda}\boldsymbol{H}'$ with $\boldsymbol{H}'\boldsymbol{H} = \boldsymbol{I}_n$.

Then $w_t^* = H' z_t \Rightarrow w_t^* \sim \mathsf{D}_n [H' \mu, \Lambda]$. Empirically:

 $\widehat{\mathbf{\Omega}} = T^{-1} \sum_{t=1}^{T} (\mathbf{z}_t - \overline{\mathbf{z}}) (\mathbf{z}_t - \overline{\mathbf{z}})' = \widehat{\mathbf{H}} \widehat{\mathbf{\Lambda}} \widehat{\mathbf{H}}' \text{ so that} \\ \mathbf{w}_t = \widehat{\mathbf{\Lambda}}^{-1/2} \widehat{\mathbf{H}}' (\mathbf{z}_t - \overline{\mathbf{z}}) \text{ leading to } \mathbf{w}_t \mathop{\sim}_{\text{app}} \mathbb{D}_n [\mathbf{0}, \mathbf{I}].$

Test for non-linearity in general linear model by low-dimensional portmanteau test in Castle and Hendry (2010) uses cubics of principal components w_t of the z_t .

Let $\boldsymbol{z}_t \sim \mathsf{D}_n \left[\boldsymbol{\mu}, \boldsymbol{\Omega} \right]$, where $\boldsymbol{\Omega} = \boldsymbol{H} \boldsymbol{\Lambda} \boldsymbol{H}'$ with $\boldsymbol{H}' \boldsymbol{H} = \boldsymbol{I}_n$.

Then $w_t^* = H' z_t \Rightarrow w_t^* \sim \mathsf{D}_n \left[H' \mu, \Lambda \right]$. Empirically:

$$\begin{split} \widehat{\mathbf{\Omega}} &= T^{-1} \sum_{t=1}^{T} (\mathbf{z}_t - \overline{\mathbf{z}}) (\mathbf{z}_t - \overline{\mathbf{z}})' = \widehat{\mathbf{H}} \widehat{\mathbf{\Lambda}} \widehat{\mathbf{H}}' \text{ so that} \\ \mathbf{w}_t &= \widehat{\mathbf{\Lambda}}^{-1/2} \widehat{\mathbf{H}}' (\mathbf{z}_t - \overline{\mathbf{z}}) \text{ leading to } \mathbf{w}_t \mathop{\sim}_{\mathsf{app}} \mathsf{D}_n \left[\mathbf{0}, \mathbf{I} \right]. \end{split}$$

If test rejects, create $g(w_t)$, otherwise $g(z_t) = z_t$: presently, implemented general cubics with exponential functions. $u_{1,i,t} = w_{i,t}^2$; $u_{2,i,t} = w_{i,t}^3$; $u_{3,i,t} = w_{i,t}e^{-|w_{i,t}|}$.

When Ω is non-diagonal, each $w_{i,t}$ is a linear combination of every $z_{i,t}$, so $w_{i,t}^2$ involves squares and cross-products of every $z_{i,t}$ etc.

Advantages of test are:

- Low dimensionality-may entail more non-linear functions than observations;
- No collinearity between elements of w_t ;
- Includes most important sources of departure from linearity, e.g. asymmetry.

Number of potential regressors for cubic polynomials is:

 $M_K = K (K+1) (K+5) / 6.$

Explosion in number of terms as $K = r \times (s+1)$ increases:

Quickly reach huge M_K : but only 3K if use $w_{i,t-j}^k$. Later address perfect collinearity between z_t and w_t .

Pretis (Oxford

9: OxMetrics

Non-Linear Model Selection in Practice

- Load data "nonlin_nobreak_example.in7"
- Batch file: "nonlinear_data_example.fl"
- Artificial data with non-linear DGP:

DGP:
$$y_t = \beta_1 x_{1,t} + \beta_2 x_{1,t}^2 + \beta_3 x_{1,t}^3 + \beta_4 x_{2,t}^2 + \epsilon_t$$
 (9)

where $\mathsf{E}[\psi_i] = t_{\beta_i} = 3$ for $i = 1, \dots, 4$, and $\epsilon_t \sim N(0, 1)$.

• Estimate the mis-specified model:

$$y_t = \beta_0 + \sum_{i=1}^{10} \beta_i x_{i,t}$$
(10)

The non-linearity index test applied to a linear model of y_t , where the regressors include an intercept, $x_{1,t}$ to $x_{10,t}$:

The test is significant at p = 0.008 with F(30, 59) = 2.10.

Specify GUM \rightarrow Estimate model. Test \rightarrow Index test for non-linearity. Quadratic, cubic and exponential principal components included.

Caveat: model also fails other diagnostics – must jointly test for outliers using IIS/SIS (Castle, Doornik, Hendry, and Pretis (2015)).

- K=10 variables \rightarrow 285 regressors if all non-linear combinations (highly correlated)
- Principal components: low dimensionality

Create principal components of set of explanatory variables:

$(x_{1,t},\ldots,x_{10,t})$

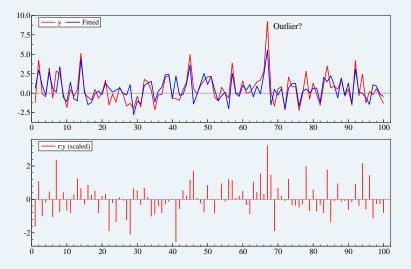
Compute squares and cubics of principal components using calculator/algebra:

- PC1sq = PC1^2;
- PC1cub = PC1^3;
- PC1exp = PC1*exp(-abs(PC1));
- . . .

Specify GUM (up to PC3) and select at tight significance level, $p_{\alpha}=0.01$

Model Selection using non-linear transformations of principal components:

	Coefficient		Std.Erro	or t-value	
x1	1.506	56	0.123	35 12.2	
PC1_sq	0.1607	95	0.0479	95 3.35	
PC3_sq	0.1473	37	0.0593	37 2.48	
AR 1-2 test:	F(2,95)	=	0.77799	[0.4622]	
ARCH 1-1 test:	F(1,98)	=	0.027482	[0.8687]	
Normality test:	Chi^2(2)	=	3.6125	[0.1643]	
Hetero test:	F(6,93)	=	2.8462	[0.0137]*	
Hetero-X test:	F(9,90)	=	5.8234	[0.0000]**	
RESET23 test:	F(2,95)	=	13.508	[0.0000]**	



Must tackle non-linearities and shifts jointly!

Pretis (Oxford)

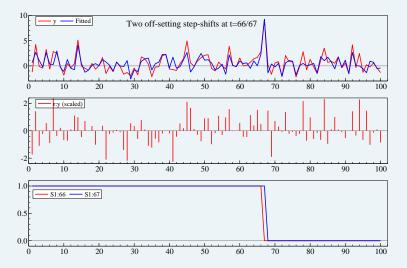
March 2016 21 / 42

Extend GUM to include Step-Indicators, select at $p_{\alpha=0.01}$:

$$y_t = \beta' \mathbf{z}_t + \gamma' \mathbf{g}(\mathbf{w}_t) + \sum_{t=1}^T \delta_t \mathbf{1}_{\{t \le t_i\}} + v_t \quad t = 1, \dots, T$$
(11)

Results:

	Coefficie	ent	Std.Erro	or t-value	t-prob
x1	1.349	88	0.122	23 11.0	0.0000
PC1_sq	0.1420	90	0.0476	57 2.98	0.0036
S1:66	-4.941	.29	1.13	38 -4.34	0.0000
S1:67	5.151	.42	1.14	4.50	0.0000
AR 1-2 test:	F(2,94)	=	1.3612	[0.2614]	
ARCH 1-1 test:	F(1,98)	=	0.29562	[0.5879]	
Normality test:	Chi^2(2)	=	1.0758	[0.5840]	
Hetero test:	F(5,93)	=	0.54736	[0.7399]	
Hetero-X test:	F(6,92)	=	0.58405	[0.7422]	
RESET23 test:	F(2,94)	=	4.0001	[0.0215]*	



Tackling non-linearities and shifts jointly.

Pretis (Oxford)

9: OxMetrics

- **So far**: non-linear DGP approximated by non-linear principal component + step-shifts.
- Now: test against preferred functional form
- Final stage test approximation against preferred functional form, $\psi(\mathbf{z}_t)$ (e.g. LSTAR, theory-motivated etc).

Encompassing test: $H_0: \gamma_j = 0, \forall j$:

$$y_t = \sum_{j=1}^{k^*} \widehat{\beta}_j x_{j,t} + \sum_{j=1}^{m^*} \gamma_j g\left(\mathbf{w}_t\right) + \sum_{i=1}^{q} \delta_i \mathbf{1}_{\{t \le t_i\}} + \lambda' \psi\left(\mathbf{x}_t\right) + \eta_t.$$

Use 'theory motivated' specification:

$$\lambda'\psi\left(\mathbf{x}_{t}\right) = \lambda_{1}x_{1,t}^{2} + \lambda_{2}x_{1,t}^{3} + \lambda_{3}x_{2,t}^{2}$$

Encompassing Model:

$$y_t = \beta_1 x_{1,t} + \gamma_1 w_{1,t}^2 + \delta_1 S_{t=66} + \delta_2 S_{t=67} + \lambda_1 x_{1,t}^2 + \lambda_2 x_{1,t}^3 + \lambda_3 x_{2,t}^2$$

```
Test for excluding:

[0] = PC1_sq

[1] = S1:66

[2] = S1:67

Subset F(3,93) = 0.49576 [0.6861]
```

Detected shifts drop out when non-linear functional form specified.

Effect of using SIS when selecting from GUM nesting a non-linear DGP

Retention at 1% (x's selected over)						
	without SIS	with SIS				
x , $\psi=3$	0.68	0.63				
x^2 , $\psi=3$	0.68	0.56				
x^3 , $\psi=3$	0.67	0.62				
SIS gauge	-	0.03				

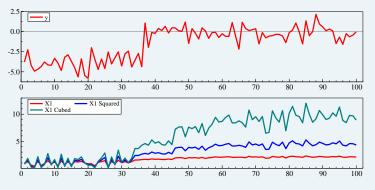
Little effect when DGP is truly non-linear.

So far:

- Automatic non-linear extensions
- SIS steps not retained if DGP truly non-linear

Now:

- Spurious non-linearity due to shifts
- Load dataset: "nonlin_break_example.in7"



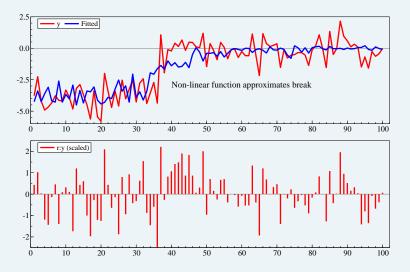
Select model at $p_{\alpha} = 0.01$ starting from GUM:

$$y_t = \beta_1 x_{1,t} + \beta_2 x_{1,t}^2 + \beta_3 x_{1,t}^3 + \sum_{i=2}^5 \lambda_i x_{i,t}$$

Selection results:

	Coefficie	nt	Std.Erro	or	t-value	t-prob
x1	-13.40	25	1.13	39	-11.8	0.0000
x3	0.08794	00	0.107	70	0.822	0.4131
x1_sq	11.97	87	1.43	37	8.33	0.0000
x1_cub	-2.668	53	0.436	69	-6.11	0.0000
AR 1-2 test:	F(2,94)	=	0.80101	[0.	.4519]	
ARCH 1-1 test:	F(1,98)	=	1.0423	[0.	.3098]	
Normality test:	Chi^2(2)	=0	.0010385	[0.	.9995]	
Hetero test:	F(7,92)	=	2.6783	[0.	.0144]*	
Hetero-X test:	F(11,88)	=	1.6932	[0.	.0880]	
RESET23 test:	F(2,94)	=	10.153	[0.	.0001]**	

Non-Linear Example 2: Breaks



Spurious non-linearity?

Apply SIS

Start with GUM including step-indicators:

$$y_t = \beta_1 x_{1,t} + \beta_2 x_{1,t}^2 + \beta_3 x_{1,t}^3 + \sum_{i=2}^5 \lambda_i x_{i,t} + \sum_{i=1}^q \delta_i \mathbf{1}_{\{t \le t_i\}}$$

Yields:

	Coefficie	nt	Std.Erro	or	t-value	t-prob
S1:36	-3.827	95	0.146	53	-26.2	0.0000
AR 1-2 test:	F(2,97)	=	0.060408	[0.	.9414]	
ARCH 1-1 test:	F(1,98)	=	0.30641	[0.	5812]	
Normality test:	Chi^2(2)	=	0.18369	[0.	9122]	
RESET23 test:	F(1,98)	=6	.4913e-02	28	[1.0000]	

Which nearly coincides with the DGP:

$$y_t = \mu + \lambda \mathbf{1}_{t \ge 35} + \epsilon_t \tag{12}$$

Step-shift identified, spurious non-linearity removed.

Pretis (Oxford)

March 2016 31 / 42

SIS when non-linear transformations spuriously approximate a break of magnitude λ_1 in a linear DGP:

Retention at 1% (x's selected over)							
	$\lambda_1 = 1$	$2\sigma_{\epsilon}$	$\lambda_1 = 4\sigma_\epsilon$				
	without SIS	with SIS	without SIS	with SIS			
x , $\psi=0$	0.41	0.02	0.83	0.02			
x^2 , $\psi=0$	0.66	0.02	0.96	0.02			
x^3 , $\psi=0$	0.3	0.02	0.83	0.01			
T_1 step	-	0.62	-	0.94			
SIS gauge	-	0.02	-	0.02			

General Approach – Model Discovery Extensions:

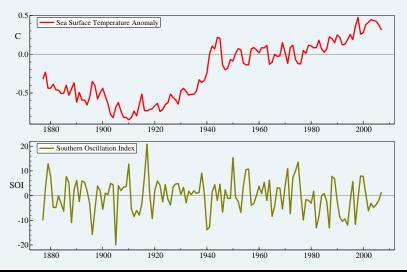
- Automatic non-linear extensions
- Jointly with indicator saturation

SIS as insurance mechanism:

- Non-linearities present: little effect of using SIS, steps not retained.
- Unknown shifts: identified through SIS rather than attributed to non-linearities

Global SST – Climate/Weather Indicator

Shape of trend? Breaks in series? El Niño Southern Oscillation?



Pretis (Oxford

Model:

$$\mathbf{y}_{t} = \mathbf{f}(\mathbf{z}_{t}) + \beta \mathbf{x}_{t} + \delta \mathbf{D} + \epsilon_{t}$$
(13)

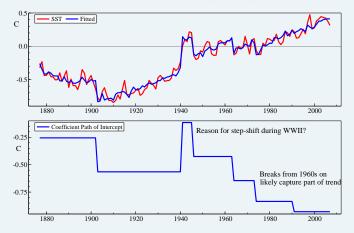
- **T**=131 (1877-2007)
- y= Global Mean SST Anomalies (C) relative to 1950-79
- z=trend, x= Southern Oscillation Index (SOI) (atm. pressure at SL)
- N = 131 + 6 = 137 variables

Specification:

• SIS,
$$p_{\alpha} = 0.01$$
 (1%)

• Non-linear trend: B-spline basis (5 degree polynomial)

SST: SIS Results (Fitted)



Multiple breaks, note:

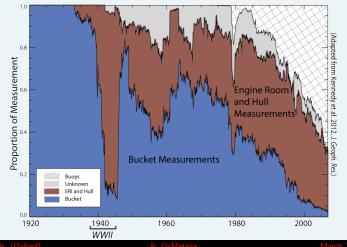
• **1940**, $\hat{\delta}_1 = 0.45^{***}C$ (se=0.04) • **1945**, $\hat{\delta}_2 = -0.31^{***}C$ (se=0.04)

Pretis (Oxford

9: OxMetric

SST: Interpreting the structural break

- WWII: 1941/1942 Measurements: buckets to engine intake
 - Danger of measurements (light)
 - Americans joined 1941/1942
- Post-WWII: Partly changed back



)16 37 / 42

Institute for

New Economic Thinking

- SST: Interpreting the structural break
 - WWII: 1941/1942 Measurements: buckets to engine intake
 - Danger of measurements (light)
 - Americans joined 1941/1942
 - Post-WWII: Partly changed back
 - Buckets: cold bias ($\approx 0.3C$) (Matthews, 2012)
 - SIS: $\hat{\delta}_1 = 0.45 \ (\pm 0.04)$

Institute for

New Economic Thinking

SOI Effect (linear)

- SIS: $\hat{\beta} = -0.004^{***}$ (se=0.001)
- Theory consistent: SOI >0 (La Niña) \rightarrow lower temp. (hiatus?!)

Breaks

• Could correct SST record for 'bucket bias'

Non-linearities

• Non-linear transformations of trend retained

Automatic selection well developed for linear models

Algorithm can be extended to handle non-linear functions – not yet automated

- Test of functional form against linear
- Low order approximations for a range of bases
- Polynomials and exponentials \times polynomials very general
- Indicator saturation to remove extreme observations/level shifts
- Number of potential non-linear variables large: choice of significance level
- Methods for more variables than observations
- Encompassing tests against specific functional forms

Complexity of empirical modeling – but theory consistent, empirically congruent model can be developed.

Joint modelling of dynamics, location shifts, relevant variables and non-linearities essential. Automatic model selection despite N > T seems a viable approach to tackling all complications jointly.

- IIS and SIS do not preclude finding non-linearites, and non-linearities removed indicators found in linear specifications.
- Not removing the large outliers could hide the presence of other variables, including the non-linearities.
- Indicator saturation: insurance mechanism in non-linear modelling.

Castle, J. L., J. A. Doornik, D. F. Hendry, and F. Pretis (2015). Detecting location shifts during model selection by step-indicator saturation.

Econometrics 3(2), 240–264.

Castle, J. L. and D. F. Hendry (2010).

A low-dimension portmanteau test for non-linearity. *Journal of Econometrics* 158(2), 231–245.