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Introduction

Economies high dimensional, interdependent, heterogeneous, and
evolving: comprehensive specification of all events is impossible.

Data generation process (DGP): joint density of all variables in
economy.
Impossible to accurately theorize about or model precisely:
Too high dimensional and far too non-stationary.

Need to reduce to manageable size in ‘local DGP’ (LDGP):
the DGP in space of variables under analysis.

Models reflect LDGP, not copies: designed to satisfy selection criteria.
Knowing LDGP, can generate ‘look alike data’ which only deviate from
actual data by unpredictable noise.

Therefore LDGP is the target for model selection.
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Monte Carlo Simulations in OxMetrics

Simulations in OxMetrics

PCNaive (OxMetrics Module)

Programming using Ox

→ focus on PCNaive
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PCNaive

PCNaive

Simple to use, intuitive menu based

Quick Monte Carlo Simulations

Teaching tool

Structure on 3 levels:

AR(1) experiment (basic)
Static experiment (intermediate)
Advanced experiment
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Using PC Naive

Using PC Naive

1 AR(1) Experiment for introduction

2 Assessing performance of automatic model selection
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AR(1) experiment

Model - Monte Carlo - AR(1) Experiment
Setup:

AR(1) DGP, choose coefficient

Monte Carlo Replications

Live Graphics – Generated Data, Histograms
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1) AR(1) Experiment

AR(1) Experiment Overview:
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Empirical example

Start with very simple example: DataSet1.in7

Dataset consists of 20 explanatory variables:

Z = (z1, . . . ,z20)
′ ∼ IN20 [0, I]

and 1 dependent variable:

yt = β1z1,t + β2z2,t + β3z3,t + β4z4,t + β5z5,t + εt

εt ∼ IN [0, 1]

where T = 100, β1 = 0.2, β2 = 0.3, β3 = 0.4, β4 = 0.5, and β5 = 0.6
which gives E (tβ1) = ψ1 = 2, ψ2 = 3, ψ3 = 4, ψ4 = 5, ψ5 = 6.
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First Monte Carlo

Instead of all using the same dataset, let’s generate our own.

Open Modeling option, → select Monte Carlo, → select
Advanced experiment.
Specify DGP as above.
We won’t analyse the model so specify any model.
Important Advanced Monte Carlo settings → all use a different
number of replications Mi + 2T .
The last draw is stored, so this will guarantee that you all have
different datasets.
Save results
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Estimate model

The general unrestricted model is:

yt = β0 +

N∑
i=1

βizi,t + ut

yt = 0.189
(0.116)

+ 0.225
(0.117)

z1,t + 0.411
(0.115)

z2,t + 0.672
(0.119)

z3,t + 0.311
(0.109)

z4,t +

0.683
(0.111)

z5,t + 0.273
(0.12)

z6,t + 0.341
(0.118)

z7,t + 0.081
(0.116)

z8,t + 0.070
(0.125)

z9,t +

0.334
(0.12)

z10,t + 0.020
(0.114)

z11,t + 0.032
(0.107)

z12,t + 0.109
(0.112)

z13,t +

0.113
(0.116)

z14,t + 0.034
(0.106)

z15,t + 0.022
(0.117)

z16,t + 0.187
(0.113)

z17,t +

0.165
(0.103)

z18,t + 0.132
(0.101)

z19,t − 0.208
(0.127)

z20,t

σ = 1.018; R2 = 0.592; L = −131.84.
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Simplifying the model

How do we select which variables matter and which do not
matter?

In this example, variables are orthogonal, therefore 1-cut sufficient.

Consider a perfectly orthogonal regression model:

yt =
∑N

i=1
βizi,t + εt (1)

E[zi,tzj,t] = λi,i for i = j & 0 ∀i 6= j, εt ∼ IN[0, σ2ε ] and T >> N .

Order the N sample t2-statistics testing H0: βj = 0:

t2(N) ≥ t2(N−1) ≥ · · · ≥ t2(1)

Cut-off m between included and excluded variables is:

t2(m) ≥ c
2
α > t2(m−1)

Larger values retained: all others eliminated.
Only one decision needed regardless of size of N
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1-cut selection

At α = 0.05, cα = 1.98.
In our example we would retain z2, z3, z4, z5, z6, z7, z10.

Errors:

Failed to retain z1 (a relevant variable – enters the LDGP);

Mistakenly retained z6, z7, z10 (irrelevant variables – do not enter
the LDGP).

At α = 0.01, cα = 2.62.
In our example we would retain z2, z3, z4, z5, z7, z10.

How did we do in our Monte Carlo experiment?

First analyse retention of irrelevant variables, then consider retaining
relevant variables.
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Selection theory

Probabilities of null rejections in t-testing for N irrelevant regressors
at significance level α (critical value cα):

event probability retain

P (| ti| < cα, ∀i = 1, . . . N) (1− α)N 0

P (| ti| ≥ cα | | tj | < cα, ∀j 6= i) Nα (1− α)N−1 1
...

...
...

P (| ti| < cα | | tj | ≥ cα, ∀j 6= i) Nα(N−1) (1− α) N − 1
P (| ti| ≥ cα, ∀i = 1, . . . N) αN N

Average number of null variables retained is:

k =

N∑
i=0

i
N !

i! (N − i)!
αi (1− α)N−i = Nα. (2)

For N = 40 when α = 0.01 this yields k = 0.4
Few spurious variables ever retained, yet 2N possible models,
namely 1012.
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Selection theory

Returning to our example:

16 irrelevant variables: the intercept and z6,t . . . , z20,t.
at α = 0.05 we should retain 0.8 of a variable on average
retention of irrelevant variables slightly higher at 3
α = 0.01 we should retain 0.16 of a variable on average – most of
the time irrelevant variables would be eliminated

Explanations:

Sampling variation – one draw from LDGP.
1-cut is only valid for perfectly orthogonal regressors.
Although in population regressors are orthogonal, sample is
correlated.

PcGive → Other models → Descriptive statistics using PcGive →
Means, standard deviations and correlations.

Largest correlations ±0.26.

Need path search to ensure ordering doesn’t matter (return to
this shortly).
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How easy is it to keep variables?

Consider the power of a t-test to retain relevant variables.

Denote the t-test as t (n, ψ) where n is the degrees of freedom and ψ
is the non-centrality parameter, which is 0 under the null.

H0: βi = 0

To calculate the power to reject the null when E [t] = ψ > 0:

P (t ≥ cα|E [t] = ψ) ≈ P (t− ψ ≥ cα − ψ|H0) .
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Keeping relevant variables

Approximate power if coefficient null only tested once:

t-test powers

ψ α P (| t| ≥ cα) P (| t| ≥ cα)4

1 0.05 0.16 0.001
2 0.05 0.50 0.063
2 0.01 0.26 0.005
3 0.05 0.85 0.512
3 0.01 0.64 0.168
4 0.05 0.98 0.902
4 0.01 0.91 0.686
6 0.01 1.00 0.997

Low signal-noise variables will rarely be retained using t-tests when the
null is tested.

Therefore the key problem: retaining relevant variables.
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Selection theory

Returning to our example:

5 relevant variables with non-centralities of 2,3,4,5 and 6

at α = 0.05 the probability of retaining z1 is 0.51; z2 is 0.85; z3 is
0.98; z4 is 1.00 and z5 is 1.00.
The probability of retaining all 5 variables is 0.42, to retain 4 it is
0.49, for 3 it is 0.08, for 2 it is 0.01, to retain 0 or 1 it is ≈ 0.

at α = 0.01 the probability of retaining z1 is 0.23; z2 is 0.65; z3 is
0.92; z4 is 0.99 and z5 is 1.00.
The probability of retaining all 5 variables is 0.14.

Example keeps variables with ψ = 3, 4, 5, 6 but does not retain
ψ = 2.
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t-statistic distributions for DGP
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t-statistic distributions for GUM
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Unconditional t-statistic distributions
for selected model
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Two costs of selection

Two costs of selection:

costs of inference, and

costs of search

First inevitable if tests of non-zero size and non-unit power,
even if commence from data generation process (DGP).

Costs of search additional to initial model being the DGP.

pdgpα,i : probability of retaining ith variable in DGP at size α.

1− pdgpα,i is cost of inference (prob. of discarding relevant).

M relevant, m ≤M retained.

pgumα,i : probability of retaining ith variable in GUM.

K irrelevant variables, k ≤ K retained.

Search costs are
∑M

i=1

(
pdgpα,i − pgumα,i

)
+
∑K

j=1

(
pgumα,j

)
.
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Costs of search and inference

Return to example and estimate the DGP:

yt = 0.244
(0.114)

z1,t + 0.384
(0.107)

z2,t + 0.556
(0.118)

z3,t + 0.323
(0.11)

z4,t + 0.563
(0.108)

z5,t

σ = 1.086; L = −147.6. (3)

Using 1-cut rule at α = 0.05, all relevant variables would be retained.
Using 1-cut rule at α = 0.01, z1,t would not be retained: a cost of
inference.

Compare to 1-cut rule commencing from GUM.
Search costs are:

relevant variables that are retained in DGP but not in GUM – z1
at 5%, none at 1%.
retained irrelevant variables in GUM – z6, z7, z10 at 5%; z7, z10 at
1%.

Simulations using Autometrics shows search costs can be small relative
to costs of inference.
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Unconditional t-statistic distributions
for selected DGP
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Selection versus fitting the DGP
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Selection from DGP or GUM
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Model search

How to find the source of Nile? Every path
is explored; North, South, East and West, till
success

Gets does this for model selection.
Search all reduction paths in general model

Path search gives impression of ‘repeated testing’.
Confused with selecting from 2N possible models
Our example just 21 variables, 221 = 2097152 possible models.
More realistic examples where N > 100: searching all possible models
an impossible task.
We are selecting variables, not models, & only N variables.

But selection matters, as only retain ‘significant’ outcomes.
Sampling variation also entails retain irrelevant, or miss relevant, by
chance near selection margin.
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Repeated testing

Does repeated testing distort selection?

1 Severe illness:
more tests increase probability of correct diagnosis.

2 Mis-specification tests:
if r independent tests τj conducted under null
for small significance level η (critical value cη):

P(|τj | < cη | j = 1, . . . , r) = (1− η)r ' 1− rη.

More tests increase probability of false rejection
Suggests significance level η of 1% or tighter.

3 Repeated diagnostic tests: probabilities unaltered.

Conclude: no generic answer.
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Apply Autometrics to example

Specify GUM and select (e.g. at α = 0.05):

yt = 0.269
(0.114)

+ 0.391
(0.104)

z2,t + 0.585
(0.116)

z3,t + 0.322
(0.108)

z4,t

+0.573
(0.106)

z5,t + 0.311
(0.106)

z7,t + 0.275
(0.11)

z10,t (4)

σ = 1.051; R2 = 0.488; L = −143.24.

Far = 2.411; Farch = 0.130; Fhetero = 0.974;

FheteroX = 0.970; Freset = 0.858; χ2
norm = 0.551

Compare across all results...

Diagnostic checking

Encompassing
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Bias corrections

Selection matters: only retain ‘significant’ variables.
Can correct final estimates for selection.

Convenient approximation that:

t
β̂

=
β̂

σ̂
β̂

' β̂

σ
β̂

∼ N

[
β

σ
β̂

, 1

]
= N [ψ, 1]

when non-centrality of t-test is ψ = β
σ
β̂

Using Gaussian approximation:

φ (w) =
1√
2π

exp

(
−1

2
w2

)
Φ (w) =

1√
2π

∫ w

−∞
exp

(
−1

2
x2
)

dx
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Truncation correction

Doubly-truncated distribution–expected truncated t-value is:

E
[
|t
β̂
| | |t

β̂
| > cα;ψ

]
= ψ∗ (5)

so observed |t|-value is unbiased estimator for ψ∗.
Thus, observe ψ∗ when true non-centrality is ψ.
Sample selection induces:

ψ∗ = ψ +
φ(cα − ψ)− φ(−cα − ψ)

1− Φ(cα − ψ) + Φ(−cα − ψ)
= ψ + r (ψ, cα) (6)

As know mapping ψ∗ → ψ, can correct by ‘inversion’:
ψ = ψ∗ − r (ψ, cα), albeit iteratively as r depends on ψ.

Applies as well to correcting β̃ once ψ is known: for β ≥ 0:

E
[
β̃ | β̃ ≥ σ

β̃
cα

]
= β

(
1 +

r (ψ, cα)

ψ

)
= β

(
ψ∗

ψ

)
(7)

Pretis (Oxford) 6: OxMetrics March 2016 32 / 38



Estimating the bias correction

Estimate ψ∗ from t
β̃

then iteratively solve for ψ from (6):

ψ = ψ∗ − r (ψ, cα) (8)

so replace r(ψ, cα) in (8) by r(t
β̃
, cα), and ψ∗ by t

β̃
:

ψ̃ = t
β̃
− r

(
t
β̃
, cα

)
, then

˜̃
ψ = t

β̃
− r

(
ψ̃, cα

)
(9)

leading to the bias-corrected parameter estimate:

˜̃
β = β̃

(˜̃
ψ/t

β̃

)
. (10)

from inverting (7).
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Implementing bias correction

Bias corrects closely, not exactly, for relevant: over-corrects for some
t-values (Hendry and Krolzig, 2005).

No impact on ‘bias’ of parameters of irrelevant variables as their
βi = 0, so unbiased with or without selection.

Some increase in MSEs of relevant variables
Correction exacerbates downward bias in unconditional estimates of
relevant coefficients & increases MSEs slightly.

But remarkable decrease in MSEs of irrelevant variables.

First ‘free lunch’ of new approach:
obvious why in retrospect–most correction for |t| near cα
which holds for retained irrelevant variables.

Bias corrections applied to orthogonal variables:
two highly correlated regressors each have barely significant
coefficients so large adjustment to both and hence their joint effect,
if orthogonalized, only one would be adjusted.
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2-step corrected (red) cond. dist’n.
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Bias correction on 1-cut MSEs

Against such costs, bias correction considerably reduces MSEs of
coefficients of retained irrelevant variables:
benefits both unconditional and conditional distributions.

Despite selecting from a very large set of potential variables:
nearly unbiased estimates of coefficients and
equation standard errors can be obtained;
little loss of efficiency from testing irrelevant variables,
some loss from not retaining relevant variables at large values of cα;
huge gain by not commencing from an under-specified model.
Normal distribution has ‘thin tails’, so power loss from tighter
significance levels rarely substantial,
but could be for fat-tailed error processes at tighter α.
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Bias corrected coefficients in example

Bias correction code is not automated in OxMetrics but a simple Ox
code can be applied.
Open: BiasCorrectionCode.ox
Paste in coefficient estimates and t-statistics.
Choose significance level.
Run to obtain 2-step corrected estimates:

yt = 0.162 + 0.380z2,t + 0.585z3,t + 0.278z4,t

+0.573z5,t + 0.264z7,t + 0.188z10,t (11)

σ = 1.051; R2 = 0.488; L = −143.24.
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