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Selection methods

Many methods for model selection (some frequently used but
ineffective in realistic settings).

Forward selection
Step-wise regression
1-cut elimination
Backward elimination
(Best subset selection)
Information criteria
Lasso
(Retina)
General-to-specific: Gets
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Selection methods

Many methods for model selection (some frequently used but
ineffective in realistic settings).

Forward selection
Step-wise regression
1-cut elimination
Backward elimination
(Best subset selection)
Information criteria
Lasso
(Retina)
General-to-specific: Gets (here as Autometrics)
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1) How to judge performance?

Many ways to judge success of selection algorithms
(A) Maximizing the goodness of fit

Traditional criterion for fitting a given model, but does not lead
to useful selections

(B) Matching a theory-derived specification
Widely used, and must work well if LDGP ' theory, but
otherwise need not

(C) Frequency of discovery of the LDGP. Overly
demanding–may be nearly impossible even if commenced
from LDGP (eg |t| < 0.1)

(D) Improves inference about parameters
Seek small, accurate, uncertainty regions around parameters
of interest–but ‘oracle principle’ invalid
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Operational criteria

(E) Improved forecasting over other methods
Many contenders: other selections, factors, model averages,
robust devices...but forecasting is different

(F) Works for ‘realistic’ LDGPs
Unclear what those are–but many claimed contenders.

(G) Relative frequency of recovering LDGP starting from GUM
as against starting from LDGP
Costs of search additional to commencing from LDGP

(H) Operating characteristics match theory
Nominal null rejection frequency matches actual;
retained parameters of interest unbiasedly estimated

(I) Find well-specified undominated model of LDGP
‘Internal criterion’–algorithm could not do better
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Which criteria?

(G), (H) and (I) are main basis: aim to satisfy all three

Two costs of selection: costs of inference and search
First inevitable if tests have non-zero null and non-unit rejection
frequencies under alternative
Applies even if commence from LDGP.
Measure costs of inference by RMSE of selecting or conducting
inference on LDGP

When a GUM nests the LDGP, additional costs of search:
calculate by increase in RMSEs for relevant variables when
starting from the GUM as against the LDGP, plus those for retained
irrelevant variables

Also see if Autometrics ‘outperforms’ other automatic methods:
Information Criteria, Step-wise, Lasso, ....
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2) Selection theory

Probabilities of null rejections in t-testing for N irrelevant
regressors at significance level α (critical value cα):

event probability retain
P (| ti| < cα, ∀i = 1, . . .N) (1− α)N 0

P (| ti| ≥ cα | | tj| < cα, ∀j 6= i) Nα (1− α)N−1 1
...

...
...

P (| ti| < cα | | tj| ≥ cα, ∀j 6= i) Nα(N−1) (1− α) N − 1
P (| ti| ≥ cα, ∀i = 1, . . .N) αN N

Average number of null variables retained is:

k =

N∑
i=0

i
N!

i! (N − i)!
αi (1− α)N−i = Nα. (1)

For N = 40 when α = 0.01 this yields k = 0.4
Few spurious variables ever retained, yet 2N possible models,
namely 1012.
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Keeping relevant variables

Approximate power if coefficient null only tested once

t-test powers
ψ α P (| t| ≥ cα) P (| t| ≥ cα)

4

1 0.05 0.16 0.001
2 0.05 0.50 0.063
2 0.01 0.26 0.005
3 0.01 0.64 0.168
4 0.05 0.98 0.902
4 0.01 0.91 0.686
6 0.01 1.00 0.997

50–50 chance of retaining when E[t2] = 4 for cα = 4
Only 6% chance of keeping 4 such variables
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Repeated testing

Does repeated testing distort selection?
(a) Severe illness:
more tests increase probability of correct diagnosis.
(b) Mis-specification tests:
if r independent tests τj conducted under null
for small significance level η (critical value cη):

P(|τj| < cη | j = 1, . . . , r) = (1− η)r ' 1− rη.

More tests increase probability of false rejection.
Suggests significance level η of 1% or tighter.

Conclude: no generic answer.
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3) One-Cut model selection

Consider a perfectly orthogonal regression model:
yt =

∑N

i=1
βizi,t + εt (2)

E[zi,tzj,t] = λi,i for i = j & 0 ∀i 6= j, εt ∼ IN[0, σ2
ε ] and T >> N.

Order the N sample t2-statistics testing H0: βj = 0:

t2
(N) ≥ t2

(N−1) ≥ · · · ≥ t2
(1)

Cut-off m between included and excluded variables is:

t2
(m) ≥ c2

α > t2
(m−1)

Larger values retained: all others eliminated.
Only one decision needed even for N ≥ 1000:
‘repeated testing’ does not occur, and
‘goodness of fit’ is never considered.

Maintain average false null retention at one variable by α ≤ 1/N,
with α declining as T →∞
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Consistent selection

Performance of selection algorithms well known
for stationary and ergodic autoregressions:
AIC, BIC and HQ (Hannan-Quinn) penalize log-likelihood by f (n,T)
for n parameters and sample T.

BIC and HQ consistent:
DGP⊆model selected with p→ 1 as T →∞ relative to n:
2n log(log(T))/T is minimum rate.

Alternatively, non-centralities ψ diverge, and
significance levels α converge to zero at suitable rate.
Can achieve consistent selection of any finite-sized model.
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Information Criteria

Problems with Information Criteria:

IC do not ensure adequate initial model specification (GETS
tests GUM for congruency)
Selection criteria too loose as N→ T
Unclear how to use when N >> T

GETS does correct these drawbacks.
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Intro to Automatic Model Selection

Introduction to concepts and practice of model selection

We shall overview a range of model selection approaches, and
their advantages/shortcomings.

Illustration: very simple biometric application. A range of
model selection approaches will be computed by hand.

Automatic model selection: Autometrics will be described
using the simple illustration.
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Getting started

As part of modelling process may need to consider
model validity
integration/cointegration
(weak) exogeneity
which variables are relevant, which aren’t
functional forms
non-linearities
lags
breaks, outliers
factors

Much can go wrong, and may need to start all over again
Modern econometric tools can help with many decisions
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Selecting relevant variables

Assume decided on
dependent variable
possible relevant variables
type of model (linear in coefficients)
maximum lag lengths
sample period

Wish to reduce model to simplify for analysis, forecasting, etc.:
remove irrelevant variables.
Any decision introduces probability of mistake

Relevant variable can appear irrelevant:
low statistical significance in the DGP
not enough variation in sample
ineffective selection device
some error prevents us from finding it (wrong model, breaks,
outliers, etc.)
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Example: biometric application

We use a simple example to focus on the practical aspects of
model selection.

Biological experiment, reported by Finney (1947):
reflex vaso-constriction (tightening of the veins) in the skin of the
finger after taking a deep breath:

response: occurrence of vaso-constriction (Vaso)
observed ‘dose’: volume of air inspired (V), rate of inspiration
(R)

Inspection of the data indicates that the product of volume and rate
governs the response: constant probability along:

VR = constant
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Example II, cont.

More generally
VαRβ = constant

which can be linearized as

α log V + β log R = constant

which was the basis for the empirical specification of the probit
model (note: computationally challenging then).
Taking a more general starting point:

Xfixed = {1}
Xfree = {v(= log V), r(= log R),VR, (VR)1/2}

using OLS for estimation.
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Finney data
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Task

Load data: finney.in7/finney.bn7
Create transformations: {v(= log V), r(= log R),VR, (VR)1/2}.
Plot data.
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Step-wise regression

Forward selection procedure:
order the regressors, i.e. find most correlated with y,
add the first regressor
reorder the remainder
continue until all significant variables found (at pa).

Step-wise regression adds:
after adding a variable, remove the most insignificant variable
(at pa, if any)

Starting point initial set of variables X (with lags, etc.).
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Ingredients for stepwise regression

t-tests (single variable addition, variable removal).

Equivalent approach: select most correlated variable (controlling
for variables that are already in the model.

Can use computationally efficient implementations, but not so
important these days.
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Task

Manual implementation of step-wise regression

Step-wise regression,

Y ={vaso},
Xfixed={1},
Xfree ={r = Lrate, v = Lvolume,VR = rate× volume, (VR)1/2}

Compute t-statistics for model with one variable.
Add most significant variable and compute t-statistics for model
with each additional variable.
Continue until no significant variables.

Significance level: α = 5%.
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Step-wise regression: example

Choose pa = 0.05, critical value ≈ 2:

Model 1: V̂asoi = 0.513

t value when adding one variable in turn:
r v VR (VR)1/2

2.08* 2.71** 5.83** 5.67**

Model 2: V̂asoi = −0.133 + 0.322VRi

t value when adding one more variable
r v VR (VR)1/2

-0.200 0.324 — 0.264

Final model: V̂asoi = −0.133 + 0.322VRi

7 ‘tests’ lead to final results
Pretis (Oxford) 5: OxMetrics March 2016 24 / 62



Step-wise regression: pros/cons

Advantages:
Fast and simple
can handle more variables than observations (k > T)

Problems:
the ordering can prevent relevant regressors from entering,
because they never appear towards the front (until the model
gets large).
Example: x1 and x2 are negatively correlated and feature in the
model together. However, individually they will not rank high
on the ordering method.
ordering criteria may be biased at an early stage by the
omission of relevant factors. what is the distribution of the test?
single path creates path dependence: adding insignificant
regressors may change the path and thus the final model
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Step-wise: simulation example

DGP –

yt = 0.5yt−1 + 0.8x1,t + 0.8x2,t + ut, ut ∼ IN[0, 1],

xt = vt, vt ∼ IN

[
0,

1 −0.8
−0.8 1

]
,

Xfixed = {1}
Xfree = {yt−1, x1t, x2t}
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Step-wise t-values vs DGP
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1-cut elimination

Delete all variables with t-value such that significance is below pa.

Order variables by significance, then do a single cut at pa.

Obviously a bad idea, unless regressors are uncorrelated.
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Task

Manual implementation of 1-cut at pa = 5%.

Estimate model with all regressors included.
Order regressors based on their t-statistics.
Eliminate all regressors with t-statistics less than
corresponding critical value.
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1-cut elimination: example

Choose pa = 0.05, critical value ≈ 2:

Model 1: V̂asoi = −2.27− 0.61ri − 0.58vi − 0.33VRi + 2.75(VR)
1/2
i

t value of each free variable
r v VR (VR)1/2

-0.905 -0.790 -0.511 0.986

Final model: V̂asoi = 0.51
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Backward elimination

Can run stepwise procedure backward:
Start with all variables in the model,
Delete the most insignificant, one at a time
Stop when none left

Ingredients for stepwise regression:
t-tests (single variable removal).
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Task

Run at backward elimination pa = 5%.

Compute t-statistics for model with all variables.
Delete least significant variable and re-estimate model.
Continue until no insignificant variables.
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Backward elimination: example

Choose pa = 0.05, critical value ≈ 2:

Model 1: V̂asoi = −2.27− 0.61ri − 0.58vi − 0.33VRi + 2.75(VR)
1/2
i

r v VR (VR)1/2

t values -0.905 -0.790 -0.511 0.986

Model 2: V̂asoi = −1.19− 0.31ri − 0.27vi + 1.36(VR)
1/2
i

r v VR (VR)1/2

t values -0.970 -0.649 — 2.11

Model 3: V̂asoi = −0.753936− 0.11ri + 0.96(VR)
1/2
i

r v VR (VR)1/2

t values -1.17 — — 5.15

Final model: V̂asoi = −0.60 + 0.82(VR)
1/2
i

4 ‘tests’ lead to final results
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Backward elimination: pros/cons

Can run stepwise procedure backward:
All variables are in at first, so will maintain pairs when
necessary,
the starting point may be statistically better behaved.

But:
still only one path, therefore:
path dependence: adding insignificant regressors will change
the path and may change the final model
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Information criteria

Performance of selection by IC well known for stationary and
ergodic autoregressions:

AIC, SC and HQ penalize log-likelihood by f (k,T) for k
parameters and sample T.
SC and HQ consistent:
DGP⊆model selected with prob→ 1 as T →∞ relative to k:
2kT−1 log(log(T))/T is minimum rate.
Need to estimate all 2k models to properly minimize
information criterion.

SC =
(
−2̂̀+ k log T

)
T−1,

HQ =
(
−2̂̀+ 2k log log T

)
T−1,

AIC =
(
−2̂̀+ 2k

)
T−1,
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Task

Use progress to select by IC from all models estimated sofar.
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Lasso

Lasso is OLS with a constraint on the absolute sum of the
parameters.

yt = β0 +

k∑
j=1

xjtβj + εt, t = 1, ...,T.

Rewrite in deviation from mean:

y∗t =

k∑
j=1

x∗jtβj + εt,

with residuals
rt(β1, ..., βk) = y∗t −

k∑
j=1

x∗jtβj.

Lasso solves:

(β̂
L(C)
1 , ..., β̂

L(C)
k ) = argminβ

T∑
t=1

r2
t (β1, ..., βk) s.t.

k∑
j=1

|βj| ≤ C.
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Lasso

If no binding constraint: equal to OLS,
otherwise parameters shrunk towards 0.
initially solve as QP problem, but Efron, Hastie, Johnstone and
Tibshirani (2004) provide elegant and fast algorithm.
Parsimony: only subset of βs nonzero when constraint is
binding.
‘less greedy’ version of step-wise regression

Lasso model selection:
Run Lasso solution forward until OLS (or perfect fit)
Choose the Lasso solution with the smallest Cp(β

L) or
SC(βL), denote this β̂L(∗)

1 , ..., β̂
L(∗)
k .

Re-estimate the model with OLS, keeping only the variables
that have β̂L(∗)

j 6= 0.
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Lasso: example

Step size non-zero coefficients SC Cp

1 1 VR -1.7956 4.9141
2 2 VR, (VR)1/2 -1.8370 1.6087
3 3 VR, (VR)1/2, v -1.7640 2.8523
4 3 VR, (VR)1/2, r -1.7684 2.6950
5 3 (VR)1/2, r, v -1.7783 2.3432
6 4 (VR)1/2, r, v,VR -1.6941 4.0000

Final model: V̂asoi = −0.24 + 0.18(VR)
1/2
i + 0.26VRi
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Lasso: pros/cons

Single path,
Difficult to know when to stop.

DGP –

yt =0.5yt−1 + 0.8x1,t + 0.8x2,t + ut, ut ∼ IN[0, 1],

xt=vt, vt ∼ IN

0,
1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1

 ,

Xfixed = {1}
Xfree = {yt−1, x1t, x2t, x3t, x4t}
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Lasso vs backward elimination

Infeasible Lasso (k=3) Backward elimination at 5% 
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-0.5 0.0 0.5 1.0

0.6

0.7

0.8

0.9

1.0

Potency

←ρ→

gauge: fraction of irrelevant variables (x3t, x4t) in the final model
potency: fraction of relevant variables (yt−1, x1t, x2t) in final model.
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Principles of Gets model selection

Define a starting model: general unrestricted model (GUM)
Designed to be congruent (diagnostic testing) and relevant,
Tests of reductions with approximately correct distribution,
Reduction can maintain congruence (or lack thereof),
Reduction up to a predefined significance level (backtesting
w.r.t. GUM: acceptable information loss).

Model selection is an iterative search procedure, need to follow
several paths:

multiple path search, or
tree search.
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Ingredients for Gets

t-tests (single variable removal).
F-tests (tests of variables removed from the GUM,
encompassing aka backtesting).
F-tests (pruning to faster search).
diagnostic tests

ARCH (Engle 1982)
Serial correlation (Godfrey 1978, Harvey 1981)
Heteroscedasticity (White 1980)
Normality (Jarque and Bera 1980; Doornik and Hansen 1994,
2008)
Chow (Chow 1960 in-sample stability test)

information criterion (tiebreaker)
stability tests (out of sample, optionally)
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Gets: example

Stage 0: formulate and estimate GUM (general unrestricted model)
Stage 1: diagnostic testing of GUM

Normality test: Chiˆ2(2) = 0.29810 [0.8615]
Hetero test: F(7,31) = 4.6698 [0.0012]**
Hetero-X test: F(13,25) = 2.8003 [0.0131]*
RESET test: F(1,33) = 2.5130 [0.1225]

Problem: heteroscedasticity
Not surprising: should have used logit/probit.

Normally: need to reconsider GUM. In this case: ignore.
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Gets: multiple path search

Current example
There are four insignificant variables in the GUM
Putting most insignificant first: VR, v, r, (VR)1/2.

Automated Gets

Delete one insignificant variable in the GUM
then do backward elimination on the reduced model,
augmented with encompassing (backtesting),
and with diagnostic tracking.
Now return to GUM, delete next insignificant variables and
repeat process.
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Gets: multiple path search

This defines four backward elimination paths:

path insignificant variables F(3, 34)-test final
VR VR, v, r 0.66449 [0.5797] (VR)1/2

v v, VR, r 0.66449 [0.5797] (VR)1/2

r r, (VR)1/2, v 0.36828 [0.7763] VR
(VR)1/2 (VR)1/2, r, v 0.36828 [0.7763] VR

Final model 1: V̂asoi = −0.60 + 0.82(VR)
1/2
i

Final model 2: V̂asoi = −0.13 + 0.32VRi

At first sight 16 t-tests and 4 F tests.

t-tests are mainly used to order variables for F tests
some F test are repeated

More like two 1-cut eliminations, one for each final model.
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Gets: notes

pa controls information loss relative to GUM:
no attempt to maximize fit
instead: find parsimonious model up to tolerated loss of fit.

diagnostic tracking (here Hetero test ignored)
may need to backtrack from terminal candidate

the parsimonious encompassing F test may fail
may need to backtrack from terminal candidate

Two reasons why a final model may have insignificant variables.
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Gets: tree search

More efficient to use a tree representation of the model space:
Multiple path search can miss reduction paths
Avoids re-estimating the same model twice (or more)
Only need to remember one reduction path from the GUM
along which it is possible to backtrack
Can implement short-cuts along a path to speed up search
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Gets: tree search

1:VR, v, r, VR1/2

2:v, r, VR1/2
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Gets: tree search

1:VR, v, r, VR1/2

2:v, r, VR1/2

3:r, VR1/2

6:v, VR1/2

4:VR1/2

5:r

8:v, r
7:v
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Gets: tree search

1:VR, v, r, VR1/2

2:v, r, VR1/2

9:VR, r, VR1/2

13:VR, v, VR1/2

15:VR, v, r

3:r, VR1/2

6:v, VR1/2

4:VR1/2

10:VR1/2, VR
11:VR

12:VR, r

14:VR, v

5:r

8:v, r
7:v
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Gets: tree search

VR, v, r, VR1/2

v, r, VR1/2

VR, r, VR1/2

VR, v, VR1/2

VR, v, r

r, VR1/2

v, VR1/2

VR1/2

VR1/2, VR
VR

VR, r

VR, v

r

v, r

v

path rejected, 
model rejected
terminal candidate
redundant path 
(not all shown)

semi terminal model
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Gets: tree search

v,r not a valid reduction of the GUM (Finney’s model),
Once VR and (VR)1/2 have been found as terminal models:
all further models with these in are redundant (because they
nest the terminal, which was already established as a valid
reduction).
Estimated 8 models (instead of 16 for multiple path search)
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Gets: choose a final model

May have economic or other reasons to prefer one terminal model
over another.

Otherwise could use information criterion to choose:

p-values in Final GUM and terminal model(s)
Final GUM terminal 1 terminal 2

VR 0.3281 . 0.00000079
(VR)1/2 0.7934 0.00000000 .
k 2 1 1
parameters 3 2 2
loglik -15.563 -16.088 -15.600
AIC 0.95194 0.92759 0.90259
HQ 0.99785 0.95820 0.93320
SC 1.0799 1.0129 0.98790
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Automatic Gets model selection

Model selection is an iterative search procedure
manual search can follow a few paths: slow and tedious,
computer automated search can follow all paths,
Well, not all. There are 2k models, so need a strategy.
k = 100 at 109/sec: 106× age of universe.

General-to-specific model selection (Gets, ‘Hendry’ or ‘LSE’
methodology) largely driven by David Hendry (DHSY, PcGive,
Alchemy, Dynamic Econometrics, ...)
Lively debate.
Automated Gets initiated by Hoover and Perez (1999), Hendry
and Krolzig (2005) (PcGets: 2nd generation, theoretical
properties, bias correction).
Study model selection through simulation – improves debate.
Autometrics (Doornik (2009), 3rd generation) improves on
PcGets, extended beyond regression models.
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Features of GETS algorithms

Hoover-Perez (1999):
1 General unrestricted model
2 Multiple path search
3 Encompassing test
4 Diagnostic testing
5 Tiebreaker

Hendry and Krolzig (1999), PcGets (2001):
1 Add presearch
2 Extend multiple-path search
3 Add iteration
4 No out-of-sample testing (Lunch and Vital-Ahuja, 1998)
5 Change treatment for Invalid GUM

PcGive (2007) Doornik (2008), Autometrics (2009):
1 Reduce role of presearch
2 Change search path algorithm: tree search
3 Extend scope: separation of model and algorithm
4 Increase efficiency
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Features of Autometrics

Autometrics implements underlying principle of general-to-specific
model selection (‘Hendry methodology’).

Autometrics
likelihood-based: separation of model and selection
Only using lag presearch (by default)
searches the whole model space:

tree search ensures that no model is estimated twice
irrelevant paths can be cut-off efficiently
F-tests are used to speed-up search

implements backtracking on diagnostics: only test from
terminal candidates, then backtrack if necessary
backtesting w.r.t. GUM 0 (the initial GUM after presearches)
removes need for encompassing of candidate models
relevant terminal candidates remembered in iterated search
implements block search for k ≥ T (k ≥ αT)
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DGP with correlated regressors

DGP –

yt =0.5yt−1 + 0.8x1,t + 0.8x2,t + ut, ut ∼ IN[0, 1],

xt=vt, vt ∼ IN

0,
1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1

 ,
Model –

Xfixed = {1}
Xfree = {yt−1, x1t, x2t, x3t, x4t}
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Four selection methods

Infeasible Lasso (k=3) Backward elimination at 5% Autometrics at 5% Step-wise at 5% 
-0.5 0.0 0.5 1.0

0.1

0.2

0.3

0.4

0.5 Gauge

←ρ→

Infeasible Lasso (k=3) Backward elimination at 5% Autometrics at 5% Step-wise at 5% 
-0.5 0.0 0.5 1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Potency

←ρ→

gauge: fraction of irrelevant variables (x3t, x4t) in the final model
potency: fraction of relevant variables (yt−1, x1t, x2t) in the final
model.
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Conclusions

Many methods of model selection available.

Only rarely justification for specific-to-general (stepwise):
lack of identification
only works when there is no path dependence (approximate
independence or single nested sequence)

General-to-specific model selection shown to have better
properties across wide range of states of nature.

Automation of model selection:
better tools lead to better empirical models
Making model selection more objective: different researchers
more likely to obtain same results.
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