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Empirical Modelling

Practice of empirical modelling

Multiple concepts introduced around Empirical Model Discovery:

Starting point: theory model
Automatically extend model
Embed theory in selection
Detection of Outliers and Structural Breaks
General-to-Specific Model Selection
Automatic Testing for Non-linearity

How to apply them all in practice?
Crucial: conduct everything jointly rather than treating
‘symptoms’ individually
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In-Practice: US Food Demand

Apply concepts to US Food Demand (Hendry and Mizon, 2011)

Starting point: theory model (A)
Automatically extend model (B)
Embed theory: general-to-specific selection (C)
Detection of Outliers and Structural Breaks (D)
Automatic Testing for Non-linearity (E)
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In-Practice: US Food Demand

Apply concepts to US Food Demand (Hendry and Mizon, 2011)

Starting point: theory model – food demand (A)
Automatically extend model – dynamics (B)
Embed theory: general-to-specific selection – Autometrics (C)
Detection of Outliers and Structural Breaks – IIS/SIS (D)
Automatic Testing for Non-linearity – Principal Comp. Test (E)
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Starting out again: Food Demand

Load data set TobinFoodUpdate.in7

The data variables are (lower case denoting logs):

. ef is constant price, per capita, expenditure on food

. e is constant price, per capita, total expenditure

. p is deflator of total expenditure

. y is constant price, per capita, income

. pf − p is real price of food

. s = (y− e) is an approximation to the savings ratio

. a is average family size–demographic effects

. n is total population of the USA–
should be irrelevant as per capita data.
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The Data
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Modelling Food Demand

Tobin (1950) modelled US food demand:
used time series 1912-48.
We use extended time-series data, updated by Reade (2008).

The basic theory is:

ef = f
(
e, pf − p, s, a

)
(1)

Conventional theory expects:

∂ef

∂e
> 0,

∂ef

∂
(
pf − p

) < 0,
∂ef

∂s
> 0,

∂ef

∂a
< 0,

∂ef

∂n
= 0 (2)

Pretis (Oxford) 10: OxMetrics March 2016 7 / 39



Modelling Food Demand

Tobin (1950) modelled US food demand:
used time series 1912-48.
We use extended time-series data, updated by Reade (2008).
The basic theory is:

ef = f
(
e, pf − p, s, a

)
(1)

Conventional theory expects:

∂ef

∂e
> 0,

∂ef

∂
(
pf − p

) < 0,
∂ef

∂s
> 0,

∂ef

∂a
< 0,

∂ef

∂n
= 0 (2)

Pretis (Oxford) 10: OxMetrics March 2016 7 / 39



Modelling Food Demand

Tobin (1950) modelled US food demand:
used time series 1912-48.
We use extended time-series data, updated by Reade (2008).
The basic theory is:

ef = f
(
e, pf − p, s, a

)
(1)

Conventional theory expects:

∂ef

∂e
> 0,

∂ef

∂
(
pf − p

) < 0,
∂ef

∂s
> 0,

∂ef

∂a
< 0,

∂ef

∂n
= 0 (2)

Pretis (Oxford) 10: OxMetrics March 2016 7 / 39



Food Demand changes

There are considerable changes over the period:

ef and e fall sharply at the beginning of the Great Depression,
rise substantially till WWII, fall after, then resume a gentle rise
(panels a and c),
so ∆ef is much more volatile pre WWII (panel e: ∆e has a
similar but less pronounced pattern).
pf − p is quite volatile till after WWII, then is relatively stable
(panel b),
s rises from ‘forced saving’ in WWII (panel d).
a (panel f) has fallen considerably, partly reflecting changes in
social mores.
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Food Demand changes

Most contributors to Magnus and Morgan (1999) found
dynamic models were non-constant over full sample
1931–1989, so modelled post 1950 only.

Hendry (1999) found a constant equation over 1931–1989 by
adding impulse indicators pre-1950 for large outliers, identified
as being due to a food program and post-war de-rationing.
Building on Hendry (2009), we re-examine US food
expenditure over 1931–2002 and forecast 2003–06.
We model ef conditional on e, s, and pf − p:
which Hendry (2009) showed were weakly exogenous in
food-demand equation.
Illustrates that even if an economic theory is basically correct,
it need not be coherent with the data.
Estimated static model is seriously mis-specified and has
wrong coefficient signs: either outcome could lead to the false
rejection of the theory.
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(A) Starting Point: Static Model

Empirical Model Discovery:
(A) Estimate static theory model

. ef is constant price, per capita, expenditure on food

. e is constant price, per capita, total expenditure

. p is deflator of total expenditure

. y is constant price, per capita, income

. pf − p is real price of food

. s = (y− e) is an approximation to the savings ratio

. a is average family size–demographic effects

. n is total population of the USA–
should be irrelevant as per capita data.

. Sample: 1929–2002
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Static model

The static theory model estimates are:

ef ,t = 5.30
(4.02)

+ 0.77
(0.14)

et + 0.11
(0.08)

(pf − p)t + 0.72
(0.14)

st − 0.36
(0.23)

at − 0.73
(0.22)

nt

R2 = 0.94 χ2
nd(2) = 19.5∗∗ Farch(1, 72) = 216.8∗∗ Far(2, 66) = 44.3∗∗

σ̂ = 0.055 Freset(2, 66) = 18.1∗∗ Fhet(10, 63) = 23.2∗∗

The static economic-theory model has a very poor fit, and
does not adequately capture behaviour of observed data.
The price elasticity (pf − p)t has the ‘wrong sign’, contradicting
(2), but is insignificant.
Although it is theoretically irrelevant, population nt is
significant.
Finally, every mis-specification test strongly rejects.
Next Figure shows the estimated model fails to describe the
1930s.
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Static ‘theory’ equation
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(A) + (D): Static Model with IIS

Poor performance and different behaviour of the pre and post
WWII: IIS is next introduced into the specification.

Empirical Model Discovery:

(A) Estimate static theory model (forced: U - fixed)
(D) Checking for outlying observations (IIS) at pα = 0.01
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(A) + (D) Static ‘theory’ & IIS

Poor performance and different behaviour of the pre- and post-
WWII: IIS. Resulting model is:

ef ,t = 0.64
(0.06)

et − 0.15
(0.03)

(pf − p)t + 1.0
(0.1)

st − 0.01
(0.08)

at − 0.47
(0.10)

nt

+ 0.24
(1.8)

− 0.30
(0.02)

I29 − 0.27
(0.02)

I30 − 0.26
(0.02)

I31 − 0.21
(0.02)

I32

− 0.16
(0.02)

I33 − 0.12
(0.02)

I34 − 0.11
(0.02)

I35 − 0.08
(0.02)

I36 − 0.06
(0.02)

I37

− 0.08
(0.02)

I41 − 0.17
(0.02)

I42 − 0.16
(0.02)

I43 − 0.10
(0.02)

I44 + 0.10
(0.02)

I46

+ 0.09
(0.02)

I47 + 0.03
(0.02)

I70 + 0.03
(0.02)

I72 − 0.034
(0.02)

I73 − 0.03
(0.02)

I98

R2 = 0.997 σ̂ = 0.015 Far(2, 47) = 4.9 χ2
nd(2) = 2.3

Farch(1, 72) = 6.7∗ Freset(2, 47) = 3.1 Fhet(10, 44) = 2.3
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Static ‘theory’ equation with IIS
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Static ‘theory’ equation with IIS

Impulse indicators dummy out almost all interwar and war
data, and as a result, few of the mis-specification test statistics
are significant: IIS essentially does what the Magnus–Morgan
investigators did.

Estimated model is much closer to (1), but n remains
significant, a feature of all subsequent results.
Tempting to conclude that theory in (1) is valid–but only after
the war for some reason–yet Tobin estimated his time-series
model over period now excluded!

Equally, cannot conclude that the theory is wrong per se
because reject null of no impulse indicators, only that in its
static form it is wrong.
In fact features of the data ‘outside’ of the theory which induce
that failure (mainly location shifts from policy interventions and
wars), and the final model we obtain satisfies most of the
theory for most of the sample.
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Equally, cannot conclude that the theory is wrong per se
because reject null of no impulse indicators, only that in its
static form it is wrong.

In fact features of the data ‘outside’ of the theory which induce
that failure (mainly location shifts from policy interventions and
wars), and the final model we obtain satisfies most of the
theory for most of the sample.
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(A) + (B): Dynamic Models

Static model (with or without Impulses) likely misses dynamics.

Empirical Model Discovery:

(A) Estimate static theory model
(B) Automatic model extensions: dynamics, add two-lags of
each variable
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Dynamic models

ef ,t = 0.71
(0.08)

et − 0.20
(0.06)

(pf − p)t + 0.26
(0.08)

st + 0.05
(0.39)

at

+ 0.13
(1.5)

nt + 0.98
(0.14)

ef ,t−1 − 0.14
(0.12)

ef ,t−2 − 0.73
(0.13)

et−1

+ 0.01
(0.12)

et−2 + 0.25
(0.09)

(pf − p)t−1 − 0.04
(0.06)

(pf − p)t−2

+ 0.01
(0.13)

st−1 − 0.04
(0.09)

st−2 − 0.10
(0.38)

at−1 − 1.45
(2.72)

nt−1

+ 1.41
(1.41)

nt−2 − 3.10
(1.80)

(3)

R2 = 0.996 σ̂ = 0.015 Far(2, 53) = 0.56 χ2
nd(2) = 0.14

Farch(1, 70) = 2.60 Freset(2, 53) = 1.79 Fhet(32, 39) = 3.78∗∗

Improved fit, but heterossk. and no cointegration tur = −2.59
(Banerjee, Dolado, and Mestre, 1998); pseudo long-run elasticities
of (pf − p) and e have wrong signs: not just dynamics.
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ABCD: Dynamic model with IIS

Empirical Model Discovery:
(A) Estimate static theory model
(B) Automatic model extensions: dynamics, two lags.
(C) Theory-embedding in general-to-specific selection (U -
fixed)
(D) Checking for outlying observations (IIS), pα = 0.01

Next use general-to-specific selection (Autometrics) with
theory variables retained, selecting over dynamics and IIS:

vast improvement in coherence of theory and evidence
anticipated signs on long-run elasticities
cointegration is clearly indicated
main impulses are for a food program in Depression, WWII, the
Korean War, with smaller impacts in the early 1970s.
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Results

ef = 0.49
(0.035)

ef ,t−1 − 0.21
(0.055)

et−1 + 0.14
(0.019)

(pf − p)t−2

+ 0.27
(0.047)

st−1 − 0.15
(0.015)

It31 − 0.16
(0.016)

I32

− 0.062
(0.011)

I33 − 0.034
(0.0097)

I43 − 0.028
(0.0087)

It50

+ 0.031
(0.0082)

I70 − 0.025
(0.0083)

I73 + 2.1
(0.93)

+ 0.61
(0.044)

et − 0.2
(0.023)

(pf − p)t + 0.21
(0.038)

st

+ 0.072
(0.04)

at − 0.34
(0.06)

nt

Far(2, 53) = 0.16 χ2
nd(2) = 0.07 Farch(1, 70) = 0.01

Freset(2, 53) = 1.25 Fhet(18, 46) = 0.95
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ABCDE: no theory ‘forced’

Empirical Model Discovery – without ‘forcing’ theory:
(A) Estimate static theory model
(B) Automatic model extensions: dynamics, two-lags
(C) Theory-embedding in general-to-specific selection
(selected over, not ‘forced’)
(D) Checking for outlying observations (IIS), pα = 0.01

(E) Automatic testing for non-linearity

Not treating ‘symptoms’ individually but all jointly!
Selecting over all variables in a GUM with 2 lags and IIS at
pα = 0.01 produces almost identical results–only insignificant
variables eliminated:
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Dynamics and shifts matter

ef ,t = 0.59
(0.04)

et − 0.32
(0.03)

(pf − p)t + 0.23
(0.04)

st − 0.16
(0.02)

nt + 0.77
(0.05)

ef ,t−1

− 0.13
(0.04)

ef ,t−2 − 0.36
(0.05)

et−1 + 0.27
(0.03)

(pf − p)t−1 + 0.17
(0.05)

st−1

− 0.11
(0.01)

I31 − 0.11
(0.01)

I32 + 0.03
(0.01)

I34 − 0.03
(0.01)

I43 + 0.03
(0.01)

I70

(R∗)2 = 0.999 σ̂ = 0.0085 Far(2, 56) = 0.69 χ2
nd(2) = 1.69

Farch(1, 70) = 0.19 Freset(2, 56) = 1.16 Fhet(18, 48) = 1.02

Solved cointegrating relation with dummies excluded:

ECM = ef − 0.63
(0.01)

e + 0.13
(0.04)

(pf − p)− 1.12
(0.08)

s + 0.45
(0.01)

n

tur = −12.1∗∗

Not just an issue of model selection.
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Equilibrium Relationship

ECM 

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

-0.25
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General Test for Non-linearity

Empirical Model Discovery – without ‘forcing’ theory:
(A) Estimate static theory model
(B) Automatic model extensions: dynamics
(C) Theory-embedding in general-to-specific selection
(selected over, not ‘forced’)
(D) Checking for outlying observations (IIS)
(E) Automatic testing for non-linearity

Index-test for non-linearity:

χ2(27) = 31.66 [p = 0.24]

or in F-form F(27, 31) = 0.90 [p = 0.61]

→ linearity not rejected.
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To Equilibrium Correction form

Write previous model in equilibrium correction form:
Store ECM Term (using Algebra)
Create ∆ef ,t,∆et, . . .

∆ef ,t = 0.14
(0.06)

∆ef ,t−1 + 0.78
(0.06)

∆et − 0.2
(0.046)

∆(pf − p)t

− 0.63
(0.16)

∆nt + 0.29
(0.059)

∆st − 0.2
(0.027)

ECMt−1

Far(2, 64) = 0.35 χ2
nd(2) = 3.72 Farch(1, 70) = 3.48

Freset(2, 64) = 5.97∗∗ Fhet(12, 59) = 7.44∗∗

...without IIS fails mis-specification tests.
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ECM with IIS

IIS (at pα = 0.01) and Equilibrium Correction – final model:

∆ef = 0.13
(0.035)

∆ef ,t−1 − 0.11
(0.012)

I31 − 0.11
(0.012)

I32

+ 0.028
(0.0096)

I34 − 0.027
(0.0096)

I43 + 0.031
(0.0085)

I70

+ 0.59
(0.04)

∆et − 0.32
(0.031)

∆(pf − p)t − 0.19
(0.1)

∆nt

+ 0.23
(0.035)

∆st − 0.36
(0.023)

ECMt−1

Far(2, 59) = 0.68 χ2
nd(2) = 1.78 Farch(1, 70) = 0.27

Freset(2, 59) = 0.23 Fhet(12, 54) = 1.01
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Conditional forecasting

This estimated model satisfies all the desired theory and
statistical criteria.

Would have found from a one-off general-to-simple selection
in a 2-lag dynamic equation with IIS after an I(0) reduction.
Starting at general would have saved many uninformative
regressions.

Stability Analysis

Using data only up to 1952 to estimate the EqCM with IIS,
‘forecast’ of ∆ef up to 2002, conditional on the observed
values of the explanatory variables.
Set sample up to 1932 (T=22), forecast for 50 periods.
Note: estimates model over ‘problematic’ inter-war period.
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In-sample 1931-1952

∆ef Fitted 
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Cond. ‘forecasts’ over 1953–2002

∆ef ∆ êf 

1940 1960 1980 2000
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Cond. ‘forecasts’ 1952-2002

1-step Forecasts ∆ef 

1930 1940 1950 1960 1970 1980 1990 2000

-0.1

0.0

0.1

1-step Forecasts ∆ef 

Performs well–FChow(50, 11) = 0.59.
Particularly impressive as that most other investigators of
these data omitted the inter-war period as discrepant.
Large data variation of inter-war period is invaluable in
improving precision of parameter estimates.
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Extend the ‘forecasts’...

1-step Forecasts ∆ef 

1930 1940 1950 1960 1970 1980 1990 2000

-0.1

0.0

0.1

1-step Forecasts ∆ef 

So far:
well-specified model
stable model – ‘forecasts’ well from 1952-2002

Let’s expand the ‘forecasts’ from 2002 until 2006...
Sample up to 1952, forecast 54 periods.
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Cond. ‘forecasts’ up to 2006

1-step Forecasts ∆ef 
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Cond. ‘forecasts’ up to 2006

1-step Forecasts ∆ef 
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‘Forecasts’ up to 2006

1-step Forecasts ∆ef 

1995 2000 2005
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Forecast failure

1-step Forecasts ∆ef 

1995 2000 2005

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04
1-step Forecasts ∆ef 

...forecast failure if expand from 2002 to 2006.

The world is ever changing...
‘good’ models can break down any time
Could switch to robust forecasting methods
robust to unexplained locations shifts (but these methods will
have to be the focus of another time...)
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Principles of Gets model selection

US Food Demand Example to illustrate principles – crucial: treat
everything jointly.

Define a starting model: general unrestricted model (GUM)
Designed to be congruent (diagnostic testing) and relevant,
Tests of reductions with approximately correct distribution,
Reduction can maintain congruence (or lack thereof),
Reduction up to a predefined significance level (backtesting
with respect to GUM: acceptable information loss).

Model selection is an iterative search procedure, need to follow
several paths:

multiple path search, or
tree search.
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Overall Conclusions

Little difficulty in eliminating almost all irrelevant variables from
the GUM (a small cost of search).

Avoids huge costs from under-specified models.
When the LDGP would be retained by Autometrics if
commenced from it, then a close approximation is generally
selected when starting from a GUM which nests that LDGP.
Theory formulations can be embedded in the GUM, to be
retained without selection, with no impact on estimator
distributions, despite selecting over N > T variables.
Model selection with tight significance levels and bias
correction is a successful approach which allows multiple
breaks to be tackled

All the ingredients for empirical model discovery jointly with
theory evaluation are in place.
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