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12 Anthropogenic influences on atmospheric CO
2

David F. Hendry and Felix Pretis*

1 INTRODUCTION

We identify anthropogenic contributions to atmospheric CO
2
 measured at Mauna Loa 

using the statistical automatic model selection algorithm Autometrics. Estimating the 

determinants of atmospheric CO
2
 is traditionally a challenge due to the complex systems 

of data involved. CO
2
 is a highly autocorrelated, non- stationary time series, and globally 

there exist a large number of potential carbon sources and sinks. There is mixed evidence 

in the literature on anthropogenic contributions to atmospheric CO
2
: the long- term trend 

is widely attributed to human factors, while the main seasonal fluctuations are thought 

to be driven by the biosphere. However, the statistical measures applied are often some-

what unsatisfactory due to the complexities of dealing with large numbers of variables.

Over the long run of geological time, evidence of repeated glaciations, and of coal 

and oil deposits from extinct tropical forests, reveals that atmospheric CO
2
 has varied 

greatly, and manifestly without any anthropogenic influence, including very low levels 

and levels as high as 1000 parts per million (ppm): see, for example, Hoffman and Schrag 

(2000); Hendry (2011) provides a summary. In the more recent half million years of ‘ice 

ages’, natural fluctuations include highs and lows of 300 and 180 ppm from Antarctic ice 

sheet drilling (see Juselius and Kaufmann, 2009). Finally, in the last 10 000–12 000 years, 

humanity has transformed planet Earth, replacing forests by agriculture and creating 

an industrial world (see, e.g., Ruddiman, 2005). Against the background of such move-

ments, it is important to establish that recent levels of atmospheric CO
2
 are not merely a 

natural event, but have an anthropogenic signature.1

We introduce a new approach to modeling changes in atmospheric CO
2
 using a model 

selection algorithm which allows for a larger number of potential variables than observa-

tions without a priori forcing any to be significant or to be excluded. Using this method, 

the main relevant explanatory variables are determined and their magnitudes estimated 

while irrelevant factors are dropped from the model.

The model controls for a number of natural carbon sources and sinks: vegetation 

measured by the Normalized Difference Vegetation Index (NDVI); temperature (meas-

ured as anomalies in the northern hemisphere); weather phenomena (measured through 

the Southern Oscillation Index); as well as accounting for dynamic transport by includ-

ing seasonal interaction terms. This allows an estimate of the anthropogenic contribu-

tion to CO
2
 as measured by industrial output indices and fossil fuel use for different 

geographical areas. The resulting estimates describe the direct effects on CO
2
 growth and 

the proportional contribution of each factor. We find that vegetation, temperature and 

other natural factors alone cannot explain either the trend or all the variation in CO
2
 

growth. Industrial production components, driven by business cycles and shocks, are 

highly significant contributors.

Section 2 provides an overview of related literature, and Section 3 discusses model 

FOUQUET 9780857933683 PRINT (M3058).indd   287FOUQUET 9780857933683 PRINT (M3058).indd   287 05/04/2013   10:0605/04/2013   10:06



288  Handbook on energy and climate change

selection, impulse indicator saturation (IIS) – which we use to detect multiple breaks in 

the models – and the Autometrics algorithm. Section 4 describes the data used, Section 

5 outlines the estimation procedures and Section 6 reports the main results. Section 7 

concludes.

2 LITERATURE REVIEW

There is a plethora of literature on atmospheric CO
2
 and its link to anthropogenic factors. 

Key aspects in the literature are finding an appropriate measure for anthropogenic activ-

ity and sufficient controls for natural effects such as vegetation and oceanic absorption. 

Atmospheric CO
2
 has been measured consistently and regularly since 1958, mostly due 

to the effort of Charles Keeling, who initiated and supported the measurement at Mauna 

Loa, Hawaii and later other measurement stations (see Sundquist and Keeling, 2009). 

This led to the now well- established and often cited ‘Keeling curve’, showing the increas-

ing trend and highly seasonal pattern in atmospheric CO
2 
(Figure 12.1). We are primarily 

interested in identifying the anthropogenic contribution to atmospheric CO
2
, so the fol-

lowing section reviews existing evidence and factors that need to be included in models.

Sources and Sinks

Anthropogenic sources

While atmospheric CO
2
 has been consistently measured at multiple sites for a long time 

(see Keeling et al., 1976; Sundquist and Keeling, 2009), the choice of anthropogenic 
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Figure 12.1 Atmospheric CO
2
 measured at Mauna Loa – the ‘Keeling curve’
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 variables is less straightforward. Three variables are regularly used: estimates of fossil 

fuel emissions; population; and cement production. In most cases, variables are meas-

ured on an annual basis and interpolated to monthly frequencies.

A standard measure for estimating fossil fuel emissions is the product of the amount 

of fuel produced, the proportion of the fuel that is oxidized, and the fuel carbon content 

(Marland and Rotty, 1984). Variations of these data are used in Erickson et al. (2008), 

Jones and Cox (2005), Randerson et al. (1997), and Nevison et al. (2008). Recent data 

using this methodology are available at an annual frequency from Marland et al. (2011). 

In contrast, Hofman et al. (2009) as well as Newell and Marcus (1987) focus on popula-

tion as a measure of human industrial output. Granados et al. (2012) extend the model 

of population by including a measure of global GDP. Cement production is a further 

major component of anthropogenic emissions. CO
2 

emissions in production through 

limestone calcination, kiln operation and power generation are estimated to make up 

approximately 5 percent of anthropogenic emissions (Worrell et al., 2001).

These measures provide a good starting point to capture anthropogenic emissions in 

the long run, but due to the annual measurement frequency do not capture short- run 

fluctuations and seasonality. Population and GDP are too broad as measures to capture 

variability other than a trend. Measurement could be improved through supplement-

ing overall fuel emissions by disaggregate individual fuel consumption. However, most 

importantly, a higher- frequency (monthly) anthropogenic measure is required to capture 

seasonal and short- term effects.

Terrestrial biosphere and transport

Aside from anthropogenic emissions, the terrestrial biosphere (vegetation) is a major 

factor in the carbon cycle’s sources and sinks. When trying to model anthropogenic 

contributions to CO
2
 it is therefore important to account for the most important factors 

in the natural world.

Atmospheric CO
2
 falls and rises seasonally each year due to photosynthetic activity 

(during summer) and respiratory release (during winter) of CO
2
 in the terrestrial bio-

sphere (Keeling et al., 1996; Buermann et al., 2007). The intensity of these effects depends 

on the length of the growing season, a fertilization effect (feedback to plant growth from 

increased CO
2
), and shifts in seasonal patterns (Kaufmann et al., 2008). The literature 

on atmospheric CO
2
 suggests a strong link between the earth’s biosphere and the level 

of CO
2
.

The Normalized Difference Vegetation Index (NDVI) provides a direct measure of 

photosynthetic activity. As Myeni et al. (1995) describe, chlorophyll found in plants 

absorbs visible light for photosynthesis and reflects near infra- red light. The more active 

a plant is (indicated by higher density of green leaves), the more visible radiation is 

absorbed and the more near infra- red is reflected. Thus the difference between the two 

measures increases with higher leaf density. Using satellite- based remote sensing, the 

intensity of reflected visible and infra- red light can be measured. Using the ratio of the 

difference between the two measures, the NDVI is defined by

 NDVI 5  
rNearIR 2 rVisible

rVisible 1 rNearIR

 (12.1)
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where rVisible and rNearIR are measures for visible and near infra- red light respectively. 

NDVI is therefore an index ranging from −1 to 11, with values around 0 denoting 

non- vegetation objects, and values around . 0.7 indicating dense vegetation (Tucker et 

al., 2010). The NDVI provides a direct measure for vegetation activity with high values 

close to 1 during the growing season (summer in the northern hemisphere), and lower 

values closer to 0 during the less active season (winter in the northern hemisphere). 

Kaufmann et al. (2008) investigate the link between NDVI and atmospheric CO
2
 using 

econometric methods and find evidence that NDVI values ‘Granger- cause’ CO
2
. There 

is also evidence of a feedback effect of increased CO
2
, leading to enhanced vegetation 

activity.

Due to transport airflows, the primary influence of vegetation on measured atmos-

pheric CO
2
 depends on the location of the measurement station. In the case of Mauna 

Loa, Hawaii, the seasonal variation due to the biosphere is driven by long- range trans-

port from Eurasia during winter and short- range transport from North America during 

summer (see Buermann et al., 2007; Taguchi et al., 2003). Narrowing down the time 

frame, Levin et al. (1995) suggest that Eurasian airflows dominate from October to June 

while North American airflows are dominant from July to September.

In terms of long- term development of terrestrial vegetation, there has been a greening 

trend – an increase of the growing season in the northern hemisphere (Lucht et al., 2002). 

This trend, however, was interrupted by the eruption of Mount Pinatubo in June 1991, 

which led to a decline in vegetation during 1992–93. This poses the question whether 

volcanic influence on atmospheric CO
2
 needs to be controlled for separately from the 

biosphere. Lucht et al. (2002) state that the main channel through which volcanoes affect 

atmospheric CO
2
 is indirect through temperature, while Hofman et al. (2009) propose 

that the Pinatubo eruption enhanced photosynthesis through scattered sunlight. Overall, 

Gerlach (2011) finds the direct effect of volcanic activity on measured atmospheric 

CO
2
 to be small, thus accounting for vegetation, and temperature is expected to be suf-

ficient without considering volcanoes separately. However, sudden breaks due to large 

 eruptions will be detected through our IIS procedure.

Oceanic absorption and El Niño

A large amount of CO
2
 is transferred between the ocean and the atmosphere, where the 

ocean acts as both a source and a sink of atmospheric CO
2
. There are two main factors 

determining oceanic carbon absorption and release (Bacastow, 1976). First, generally 

ocean absorption of CO
2
 is governed by the difference in partial pressure between the 

atmospheric and oceanic CO
2
:

 
dp

dt
5 2 k # (p 2 P)  (12.2)

where p is the partial pressure of atmospheric CO
2
, P is the partial pressure of oceanic 

CO
2
 beneath a surface layer and k is a variable capturing layer thickness and wind. These 

values are affected primarily by temperature and wind speed. Temperature is a key factor 

in oceanic CO
2
 transfer, as higher sea surface temperature reduces uptake and increases 

outgassing (Watson et al., 1995). Increased wind speed increases k, so leads to higher 

oceanic CO
2
 uptake. The second effect is upwelling – dense cold water driven to the 

FOUQUET 9780857933683 PRINT (M3058).indd   290FOUQUET 9780857933683 PRINT (M3058).indd   290 05/04/2013   10:0605/04/2013   10:06



Anthropogenic influences on atmospheric CO
2
   291

surface releases CO
2
 stored in the ocean. Absorption and upwelling play opposite roles; 

which dominates is debated and depends on the geographical region.

The atmospheric fluctuations of air pressure differences known as Southern Oscillation 

affect oceanic absorption through the two channels described above. Southern Oscillation 

describes the change of air pressure differences between Tahiti and Darwin, Australia 

(see Troup, 1965; Bacastow, 1976; Keeling and Revelle, 1985). It is measured as an index 

(SOI) from the Australian Bureau of Meteorology (2011), and defined as

 SOI 5 10 # DPt 2 DPt

sDPt

 (12.3)

where DPt is the difference in the average of mean sea level pressure between Tahiti and 

Darwin for month t. DPt is the long- run average of DPt and sDPt is the long- run standard 

deviation of DPt for the given month respectively. Negative values of the SOI are gen-

erally referred to as El Niño years, while positive values correspond to episodes of La 

Niña. However, the effect on oceanic absorption is not so clear cut. Episodes of La Niña 
(SOI .  0) are associated with increased wind speeds (increase in k in equation (12.2)), 

thus making uptake easier. Nevertheless, increased wind also increases upwelling, which 

leads to a release of oceanic CO
2
. Bacastow et al. (1985) suggest that easier absorption 

outweighs upwelling during episodes of La Niña (SOI .  0), resulting in higher absorp-

tion of CO
2
 by the ocean when the SOI is positive. In turn, this implies less absorption 

during El Niño (SOI ,  0) years.

On the contrary, Francey et al. (1995) find the opposite – during La Niña years 
(SOI .  0) oceanic absorption is relatively lower because of the large upwelling effect. 

Keeling and Revelle (1985) side with Francey on the theoretical model that upwelling 

should outweigh increased absorption, but empirically find that less atmospheric CO
2
 

is absorbed during El Niño episodes (SOI ,  0), which agrees with Bacastow’s (1976) 

findings.

Another factor that is not often considered in the literature is CO
2
 use by oceanic 

algae, as Ritschard (1992) mentions. Nevertheless, data on algae are limited as they are 

not covered by the NDVI satellite measures, and consequently are not considered in our 

study.

Looking at the bigger picture, most evidence suggests that the ocean has become 

a carbon sink for anthropogenic emissions (Christopher et al., 2007). As increased 

CO
2
 emissions into the atmosphere increased atmospheric partial pressure of CO

2
, 

absorption by the ocean increased due to the pressure difference. However, the abso-

lute magnitude of this effect is not known, and they estimate that approximately 48 

percent of fossil fuel emissions are absorbed in the ocean; and atmospheric CO
2
 would 

be approximately 55 ppm (parts per million) higher if there were no oceanic uptake. 

Orr et al. (2001) similarly find the ocean to be a net carbon sink but, as well as Nevison 

et al. (2008), suggest that most models overestimate the proportion of CO
2
 emissions 

absorbed by the ocean.

In order to capture the key factors determining oceanic uptake when modeling atmos-

pheric CO
2
, it is important to account for temperature (which crucially affects partial 

pressure) and control for Southern Oscillation, even though the effects of El Niño and 

La Niña are not fully understood.
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Modeling Methodology

The models for atmospheric CO
2
 can broadly be classed into two categories: atmospheric 

transport and statistical models. Data for both are often decomposed into a long- run 

trend, cycle and noise using Fourier decompositions or the Hodrick–Prescott (HP) filter.

Atmospheric transport describes spatial three- dimensional models with vertical levels 

based on solving the fundamental equations for conservation of mass, momentum and 

energy. For different latitude and longitude grid resolutions, these models simulate 

carbon emissions and global transport (for the set- up and methodology of these models 

see Hansen et al., 1983; Kawa et al., 2004). Within this group of models, Erickson et al. 

(2008), Nevison et al. (2008), Randerson et al. (1997) and Keeling et al. (1995) use annual 

emissions data to analyze anthropogenic effects.

Statistical approaches also vary in methodology. Thoning and Tans (1989), Keeling 

et al. (1976) and Enting (1987) use Fourier decompositions to study trend and seasonal 

cycle. Granados et al. (2012) and Granados et al. (2009) use cointegration and time- 

series regression to study links between population, GDP and HP- filtered CO
2
 growth. 

However, no actual measure of anthropogenic emissions is used in these studies. Hofman 

et al. (2009) use regression and graphical comparisons of carbon and population, while 

Jones and Cox (2005) regress growth rates of CO
2
 on global emissions and cement pro-

duction. Newell and Marcus (1987) look at the simple correlation between levels of CO
2
 

and global population.

Concerning modeling methods, atmospheric transport models and many statistical 

techniques are widely applied and well documented. However, they suffer from similar 

problems. Often inappropriate statistical techniques are applied without considering the 

time- series properties of the data. Correlation of time series alone is not an appropriate 

measure of dependence between them. The low frequency of measurement of emissions 

data is problematic and models are restricted by an initial choice of a small number of 

independent variables. Original data are rarely used: instead series are decomposed. This 

step is not necessary a priori, especially when explanatory variables that are seasonal 

themselves are available. Additionally, the regression analyses applied in many papers 

are not robust to outliers or structural breaks, do not always handle non- stationarity, 

and present few tests for mis- specification.

Summary of the Main Findings

The long- run trend in increasing CO
2
 is clearly driven by anthropogenic factors, whereas 

the short- run seasonal fluctuations and changes in amplitude are mostly attributed to 

changes in the biosphere.

Long- term trend

The long- term trend in atmospheric CO
2
 is fossil fuel induced. Pre- industrial levels of 

CO
2
 are estimated to be around 260–280 ppm (see Wigley, 1983; Hofman et al., 2009), 

based on ice core, tree ring and oceanic data. Consistent and repeated measurement, 

starting with Keeling’s work in 1958, has documented the rise in CO
2
 to a current level 

of approximately 390 ppm measured at Mauna Loa. The rate of increase of CO
2
 is pro-

portional to combustion of fossil fuels (see Keeling, 1973; Keeling et al., 1976; Keeling et 
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al., 1995; Thoning and Tans, 1989). Using population as a proxy measure for emissions 

yields similar results (Hofman et al., 2009; Newell and Marcus, 1987; Granados et al., 

2009; Granados et al., 2012).

Given the large departure from pre- industrial levels, Hansen et al. (2008) investigate 

the question of a target level CO
2
. They suggest that (at the time of their writing) the 

level of 385 ppm is too high to maintain climate conditions that current life has adapted 

to. Levels of 450 ppm in the Caenozoic era were associated with near ice- free conditions. 

Consequently, they propose a target level of at most 350 ppm.

Seasonal variation and amplitude

Seasonal fluctuations and changes in amplitude are mainly attributed to factors in the 

biosphere rather than industrial emissions. There are two effects described in the litera-

ture: one is the general pattern of seasonality; the second is an increase in the amplitude 

of this seasonality. In particular a perceived increase in the growing season is alleged to 

be the driving force behind increases in amplitude.

Many studies propose that the seasonal component of atmospheric CO
2
 reflects the 

inter- annual uptake by plants. This is supported by the fact that the amplitude of this 

seasonality for a given season decreases towards the equator (Keeling et al., 1976). In 

particular, Enting (1987) argues that vegetation is sufficient to account for most of the 

inter- annual variation and that economic data do not show the required seasonality. 

While the peak to trough ratio measured at Mauna Loa was approximately 0.8 for the 

time period Enting investigates, he suggests that industrial emissions are not sufficient 

to cause this seasonal change. However, as is obvious from many economic time series, 

there is high seasonality in production and therefore in emissions.

The amplitude of the seasonal effect has been increasing over time. Keeling et al. 

(1996), Randerson et al. (1997), Kohlmaier et al. (1989), and Bacastow et al. (1985) 

characterize the increase as a result of a lengthening growing season with only a very 

small effect directly from fossil fuel emissions. The effect from anthropogenic emissions 

in these studies ranges from 0.01 to 0.2 percent on the change of amplitude. Additionally, 

Keeling et al. (1995) find that changes in the overall growth rate of CO
2
 are driven by 

changes in vegetation and temperature rather than changes in industrial emissions.

A major issue with many of the above- mentioned studies is that anthropogenic emis-

sions and production data are measured annually and therefore do not have the required 

frequency to be able to account for seasonal fluctuations. In a recent paper, Erickson 

et al. (2008) investigate this issue and find that economic data would suggest that the 

highest anthropogenic fluxes occur at the same time as the respiration phase of plants 

(winter in the northern hemisphere). Once models account for seasonality in fuel con-

sumption, this will then lead to a diminished effect of seasonality from the biosphere.

Contribution of this Chapter

There are recurring problems with existing models of anthropogenic contributions to 

CO
2
. Climate and atmospheric carbon fluxes are complex systems; nevertheless, many 

of the models are restricted by a priori selections of explanatory variables. The data used 

to account for anthropogenic emissions are often measured at too low a frequency to 

capture any seasonality. The main series of CO
2
 is often decomposed into cycles and 
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trends, something that is not necessary if the explanatory data are measured at a rea-

sonable frequency. On the one hand, a significant number of the papers that approach 

the problem from a statistics or economics point of view do not sufficiently control for 

the biosphere or other natural factors. On the other hand, many models coming from a 

natural science background use statistical methods that are ill fitted given the time- series 

characteristics of the data. Modern econometric methods can provide an interdiscipli-

nary solution to these problems.

To address these issues, we introduce an extended general- to- specific (Gets) modeling 

approach based on automatic model selection and the theory of reduction. This allows 

for a large number of candidate explanatory variables; in particular, models can be 

estimated with more explanatory variables than observations. It is therefore possible 

to include many lags to capture time dynamics as well as a wide range of controls for 

natural factors and industrial output measures. As our main measure of anthropogenic 

productivity and emissions is industrial production (measured at monthly intervals), 

the data are analyzed as a whole without requiring prior decomposition into trends and 

cycles. Models are also not restricted to a tight a priori selection of variables. Using IIS, 

the methods are robust to outliers and structural breaks, handle unit roots reasonably 

well, and provide a straightforward method of testing for mis- specification.

Overall, the literature indicates a clear necessity to control for the biosphere, tem-

perature, El Niño effects, and long-  (as well as short- ) run anthropogenic measures. 

Intuitively, our approach is to utilize a large number of potential determinants control-

ling for the above- mentioned factors, and then use automatic model selection techniques 

to determine which forces are significant. Starting with a theory- based, but very broad, 

general unrestricted model (GUM), the initial system is reduced to a specific model. This 

is a comparatively agnostic and data- driven approach that imposes few restrictions on 

explanatory variables while being robust to sudden shifts (structural breaks).

3 METHODOLOGY

The carbon cycle, with many potential sinks and sources, is a complex system, which 

makes it near- impossible to correctly specify an appropriate model a priori. To model 

complex equations, we rely on general to specific (Gets) modeling approaches (see 

Campos et al., 2005). The unknown data- generating process (DGP) is the underlying 

structure that creates the data. Empirical modeling will always deal with a subset of vari-

ables of the DGP; thus an important factor is the local data- generating process (LDGP) 

– the generating process in the space of the variables under analysis: see Hendry (2009). 

The approach, therefore, is to construct a set of data based on broad theoretical assump-

tions, which nests the LDGP; then, within this set, reduce the model from its general 

form down to a specific representation. This is a two- step procedure. One: define a set 

of N variables that includes the LDGP as a sub- model. Two: starting with that general 

model as a good approximation of the overall properties of the data, reduce its complex-

ity by removing insignificant variables, while checking that at each reduction the validity 

of the model is preserved. This is the basic framework of Gets modeling.

This section introduces theoretical concepts of model selection, their use in mis- 

specification testing, followed by the introduction of impulse indicator saturation (IIS) 
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and its generalized version. All these concepts are then united and applied through the 

automatic search algorithm Autometrics. The algorithm combines these features through 

automated selection based on Gets while handling more variables than observations with 

IIS for detecting breaks and outliers, and mis- specification testing.

Model Selection

The theory of reduction characterizes the operations implicitly applied to the DGP 

to obtain the local LDGP. Choosing to analyze a set of variables, denoted yt, x1,t, 

determines the properties of the LDGP, and hence of any models of yt given x1,t (with 

appropriate lags, non- linear transforms thereof etc.). A congruent model is one that 

matches the empirical characteristics of the associated LDGP, evaluated by a range of 

mis- specification tests (see, e.g., Hendry, 1995, and the following section). A model is 

undominated if it encompasses, but is not encompassed by, all other sub- models (see, 

e.g., Mizon and Richard, 1986; Hendry and Richard, 1989; and Bontemps and Mizon, 

2008).

Mis- specification Testing

Using a large number of variables with IIS (discussed in the next section) also provides 

a new view of model evaluation: to avoid mis- specification and non- constancy, start as 

general as possible within the theoretical framework, using all the available data uncon-

strained by N . T  (where N is the number of variables and T the number of observa-

tions), retaining the theory- inspired variables and only selecting over the additional 

candidates.

Even so, this approach does not obviate the need to test the specification of the auxil-

iary hypotheses against the possibility that the errors are not independent, are heteroske-

dastic (non- constant variance) or non- normal, that the parameters are not constant, that 

there is unmodeled non- linearity, and that the conditioning variables are not independ-

ent of the errors. When N ,,T, the first five are easily tested in the initial general model; 

otherwise their validity can be checked only after a reduction to a feasible sub- model. 

Congruence is essential not only to ensure a well- specified final selection, but also for 

correctly calibrated decisions during selection based on Gaussian significance levels, 

which IIS will help ensure.

More Variables than Observations: N .  T

The model selection approach introduced here allows for more variables than observa-

tions to be used in modeling (N .  T). For Autometrics this was first introduced through 

impulse indicator saturation, and has recently been extended to the general case.

Impulse indicator saturation

The numbers, timings and magnitudes of breaks in models are usually unknown, and are 

obviously unknown for unknowingly omitted variables, so a ‘portmanteau’ approach 

is required that can detect location shifts at any point in the sample while also selecting 

over many candidate variables. To check the null of no outliers or location shifts in a 
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model, impulse indicator saturation (IIS) creates a complete set of  indicator variables 

{1
{j5t}

} equal to unity when j 5 t and equal to zero otherwise for j 5 1, . . . , T, and 

includes these in the set of candidate regressors. Although this creates T variables when 

there are T observations, in the ‘split- half’ approach analyzed in Hendry et al. (2008), a 

regression first includes T/2 indicators. By dummying out the first half of the observa-

tions, estimates are based on the remaining data, so any observations in the first half 

that are discrepant will result in significant indicators. The location of the significant 

indicators is recorded, then the first T/2 indicators are replaced by the second T/2, and 

the procedure repeated. The two sets of significant indicators are finally added to the 

model for selection of the significant indicators. The distributional properties of IIS 

under the null are analyzed in Hendry et al. (2008), and extended by Johansen and 

Nielsen (2009) to both stationary and unit- root autoregressions.

Figure 12.2 illustrates the ‘split- half’ approach for yt , IN[m,s2
y
] for T 5 100 select-

ing indicators at a 1 percent significance level (denoted a). The three rows correspond 

to the three stages: the first half of the indicators, the second half, then the selected 

indicators combined. The three columns respectively report the indicators entered, the 

indicators finally retained in that model, and the fitted and actual values of the selected 

model. Initially, although many indicators are added, only one is retained. When those 

indicators are dropped and the second half entered (row 2), none is retained. Now the 

combined retained dummies are entered (here just one), and selection again retains it. 

Since aT 5 1, that is the average false null retention rate.

We next illustrate IIS for a location shift of magnitude l over the last k observations:

 yt 5 μ 1 l1{t$T2k11} 1 et (12.4)
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Figure 12.2 Impulse indicator saturation under the null of no break

FOUQUET 9780857933683 PRINT (M3058).indd   296FOUQUET 9780857933683 PRINT (M3058).indd   296 05/04/2013   10:0605/04/2013   10:06



Anthropogenic influences on atmospheric CO
2
   297

where et ~ IN [0,s2
e
] and l 2  0. The optimal test in this setting would be a t- test for a break in 

(12.4) at T 2 k 1 1 onwards, but requires precise knowledge of the location- shift timing, as 

well as knowing that it is the only break and is the same magnitude break thereafter. Figure 

12.3 records the behavior of IIS for a mean shift in (12.4) of 10s
e
 occurring at 0.75T 5 75. 

Initially, many indicators are retained (top row), as there is a considerable discrepancy 

between the first- half and second- half means. When those indicators are dropped and the 

second set entered, all those for the period after the location shift are now retained. Once 

the combined set is entered (despite the large number of dummies), selection again reverts to 

just those for the break period. Under the null of no outliers or breaks, any indicator that is 

significant on a subsample would remain so overall, but for many alternatives, subsample 

significance can be transient, due to an unmodeled feature that occurs elsewhere in the data 

set. Thus there is an important difference between ‘outlier detection’ procedures and IIS.

While IIS is perhaps surprising initially, many well- known statistical procedures are 

variants of IIS. The Chow (1960) test corresponds to subsample IIS over T 2 k 1 1 to T, 

but without selection, as Salkever (1976) showed, for testing parameter constancy using 

indicators. Recursive estimation is equivalent to using IIS over the future sample, and 

reducing the indicators one at a time. Johansen and Nielsen (2009) relate IIS to robust 

estimation, and show that under the null of no breaks, outliers or data contamination, 

the average cost of applying IIS is the loss of aT  observations. Thus, at a 5 0.01, for 

T 5 100 one observation is ‘dummied out’ by chance despite including 100 ‘irrelevant’ 

impulse indicators in the search set and checking for location shifts and outliers at every 

data point. Retention of theory variables is feasible during selection with IIS, as is jointly 

selecting over the non- dummy variables, and IIS can be generalized to multiple splits of 

unequal size. While IIS entails more candidate variables than observations as N 1T .  T, 

selection is feasible as Autometrics undertakes expanding as well as  contracting block 
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Figure 12.3 IIS stages for a location shift
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searches (see next section). Non- linear model selection (including threshold models) is 

examined in Castle and Hendry (2011).

For a single location shift, Hendry and Santos (2010) show that the detection power is 

determined by the magnitude of the shift t; the length of the break interval T − T*, which 

determines how many indicators need to be found; the error variance of the equation s2
h; 

and the significance level, a, where a normal- distribution critical value, ca, is used by the 

IIS selection algorithm. Castle et al. (2012b) establish the ability of IIS to detect multiple 

location shifts and outliers, including breaks close to the start and end of the sample, as 

well as correcting for non- normality. Figure 12.4 shows the application of the general 

autometrics algorithm to a trending process with four breaks of varying magnitudes 

over 1, . . . , 10; 40, . . . , 45; 75, . . . , 90; and 90, . . . , 100, to illustrate the ability of IIS to 

capture multiple breaks, at both the start and end of the sample.

General case of N . T

The idea of generalizing using more variables than observations from IIS to all forms 

of independent variables is introduced by Hendry and Krolzig (2005) as well as Hendry 

and Johansen (2013). Suppose there are N total regressors partitioned into J blocks of n
j
, 

where N 5gJ
j51nj such that N . T  and nj ,  T  for all j. Consequently the total number 

of variables N exceeds the number of observations T but total variables can be parti-

tioned into J blocks n
j
, each smaller than T. Their approach suggests randomly partition-

ing the set of variables into blocks of n
j
, applying Gets to each block retaining the selected 

variables and crossing the groups to mix variables. The next step is to use the union of 

selected variables from each block to form a new initial model and repeat the process 

until the final union of selected variables is sufficiently small. Autometrics  implements a 

variant of this algorithm to handle the general case of N . T.

Autometrics

Autometrics (see Doornik, 2009) is the latest installment in the automated Gets method-

ology and is available in the OxMetrics software package. The algorithm is based on the 

following main components:

0 10 20 30 40 50 60 70 80 90 100

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0 actual

fitted

Figure 12.4 IIS outcomes for four location shifts

FOUQUET 9780857933683 PRINT (M3058).indd   298FOUQUET 9780857933683 PRINT (M3058).indd   298 05/04/2013   10:0605/04/2013   10:06



Anthropogenic influences on atmospheric CO
2
   299

1. GUM: the general unrestricted model (GUM) is the starting point of the search. 

The GUM should be specified based on broad theoretical considerations to nest the 

LDGP.

2. Pre- search: prior to specific selection, a pre- search lag reduction is implemented to 

remove insignificant lags, speeding up selection procedures and reducing the frac-

tion of irrelevant variables selected (denoted the gauge of the selection process). 

Pre- search is only applied if the number of variables does not exceed the number of 

observations (N , T).

3. Search paths: Autometrics uses a tree search to explore paths. Starting from the 

GUM, Autometrics removes the least significant variable as determined by the 

lowest absolute t- ratio. Each removal constitutes one branch of the tree. For every 

reduction, there is a unique sub- tree which is then followed; each removal is back- 

tested against the initial GUM using an F- test. If back- testing fails, no sub- nodes of 

this branch are considered (though different variants of this removal exist). Branches 

are followed until no further variable can be removed at the pre- specified level of 

significance a. If no further variable can be removed, the model is considered to be 

terminal.

4. Diagnostic testing: each terminal model is subjected to a range of diagnostic tests 

based on a separately chosen level of significance. These tests include tests for 

normality (based on skewness and kurtosis), heteroskedasticity (for constant vari-

ance using squares), the Chow test (for parameter constancy in different samples), 

and residual autocorrelation and autoregressive conditional heteroskedasticity. 

Parsimonious encompassing of the feasible general model by sub- models both 

ensures no significant loss of information during reductions, and maintains the null 

retention frequency of Autometrics close to a: see Doornik (2008). Both congruence 

and encompassing are checked by Autometrics when each terminal model is reached 

after path searches, and it backtracks to find a valid less- reduced earlier model on 

that path if any test fails. This repeated re- use of the original mis- specification tests 

as diagnostic checks on the validity of reductions does not affect their distributions 

(see Hendry and Krolzig, 2003).

5. Tiebreaker: as a result of the tree search, multiple valid terminal models can be 

found. The union of these terminal models is referred to as the terminal GUM. As 

a tiebreaker to select a unique model, the likelihood- based Schwarz (1978) infor-

mation criterion (SIC) is used, although other methods are also applicable, and 

 terminal models should be considered individually.

In simulation experiments, models are primarily evaluated based on three concepts: 

gauge, potency and the magnitudes of the estimated parameters’ root mean- square errors 

(RMSEs) around the DGP values (see Doornik and Hendry, 2009). Gauge describes the 

retention of irrelevant variables when selecting (i.e. variables that are selected but do not 

feature in the DGP). Potency measures the average retention frequency of relevant vari-

ables (variables that are selected and feature in the DGP). Low gauge (close to zero) and 

high potency (close to 1) are preferred, as are small RMSEs.

The main calibration decision in the search algorithm is the choice of significance level 

a at which selection occurs. Selection continues until retained variables are significant at 

a, although it can be the case that variables in the final model are also retained at a level 
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above a if removal leads to diagnostic tests failing. a is approximately equal to the gauge 

of selection. Further, the choice of diagnostic tests and lag length selection for residual 

autocorrelation and autoregressive conditional heteroskedasticity need to be set.

In the general case of N . T and IIS, Autometrics groups variables into two catego-

ries: selected and not selected (Doornik, 2010). Not currently selected variables are split 

into sub- blocks and the algorithm proceeds by alternating between two steps: first, the 

expansion step – selection is run over not- selected sub- blocks to detect omitted vari-

ables. Second, the reduction step – a new selected set is found by running selection on 

the system augmented with the omitted variables found in step one. This is repeated until 

the dimensions of the terminal model are small enough and the algorithm converges, so 

the final model is unchanged by further searches for omitted variables.

Autometrics has been applied successfully in a range of fields: see, for example, Hendry 

and Mizon (2011) on US food expenditure, Bårdsen et al. (2010) on unemployment in 

Australia, and Castle et al. (2011) for a comparison with other selection methods.

Nevertheless, overall selections should be interpreted carefully. Successful identifica-

tion of the underlying LDGP can be adversely affected by collinearity of the independent 

variables. Most simulations ofAutometrics with large numbers of variables use orthogo-

nal regressors, which makes selection easier. Furthermore, when N . T in the block 

selection algorithm of Autometrics, adding or dropping a variable from the initial GUM 

may change the block partitioning of variables, so the selection is not invariant to the 

initial specification.

The next section covers the data used to construct the GUM in an attempt to nest 

the LDGP for atmospheric CO
2
. In the section following, Autometrics is then used to 

 determine the anthropogenic contributions to CO
2
.

4 DATA

CO
2

The atmospheric CO
2
 data used here are taken from Keeling’s measurements at Mauna 

Loa, available from Tans and Keeling (2011) (Scripps Institution of Oceanography). 

The time series of CO
2
 in monthly averages runs from 1958:3 until 2011:7 at the time of 

writing. Simple inspection of the data shows that both the level (see Figure 12.1) and the 

annual change (see Figure 12.5) are increasing over time.

The seasonal fluctuations are apparent in the data, and as Buermann et al. (2007) poet-

ically describe it, the regular seasonal cycle of CO
2
 at Mauna Loa ‘records the breathing 

of the Northern Hemisphere biosphere’. In economic terms the level of atmospheric CO
2
 

can plainly be described as a stock variable. The total level of CO
2
 can be approximated 

by the integral of the netflow to the atmosphere:

 CO2t
 5  3Netflow dt (12.5)

where Netflow 5 carbon sources – carbon sinks. Therefore any analysis of the impact of 

anthropogenic emissions should be based on the change in atmospheric CO
2
:
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dCO2

dt
5 Netflow (12.6)

Approximating this relationship from continous to discrete time:

 
dCO2

dt
 <  DCO2,t 5 CO2,t 2 CO2,t21 5 Netflowt (12.7)

The dependent variable modeled is therefore DCO2,t. Equations (12.5)–(12.7) suggest 

that any relationship between the change in atmospheric CO
2
 and netflow should be 

modeled in levels rather than any non- linear transformation thereof. The following 

section identifies variables that make up the netflow, both anthropogenic as well as 

natural sources and sinks.

Terrestrial Biosphere

We use NDVI data to account for vegetation effects on CO
2
. Data are available for the 

NDVI from the Oak Ridge National Laboratory Distributed Archive Center (see Tucker 

et al., 2010), ranging from 1981:7 until 2002:12 at spatial resolutions of 0.25, 0.5 and 1.0 

degrees latitude and longitude.

CO
2
 measured at Mauna Loa is driven by North American airflow during the summer 

and airflow from Eurasia during the winter. Therefore the NDVI data are split into two 

main regions: North America and Eurasia. Figure 12.6 shows the NDVI measure in 

detail for North America in August and January respectively. Using 1° spatial resolu-

tion, an algorithm then takes the average of every 3 3 3 observation grid on land within 

the two regions (excluding water, permanent ice and missing observations). To capture 
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Figure 12.5 Annual changes in atmospheric CO
2
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Figure 12.6 NDVI at 1° North America in 1981: August (top) and January (bottom)
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the main variation of vegetation, similar to the spatial analysis in Buermann et al. 

(2007), the North American region is defined by the rectangle ranging from 86°N/167°W 

to 14°N/48°W, and the Eurasian region by the rectangles ranging from 75°N/9°E to 

36°N/51°E and 76°N/52°E to 7°N/358°E. This generates 198 time- series variables for 

North America and 567 for Eurasia.

Due to the nature of a common growing season in the northern hemisphere, the gener-

ated time series are highly collinear. Principal components (PCs) are used to reduce the 

number of variables, while retaining most of the variation in the data. Since this process 

captures the overall variation in vegetation, it should also reduce the problem of random 

noise due to cloud cover at the time of satellite measurement. Although PCs are just 

linear transformations of the original times series, they have two potential advantages. 

First, PCs are mutually orthogonal, so adding or eliminating any one PC has little effect 

on the coefficient estimates of others, making the model more robust. Second, linear 

combinations of ‘small’ effects can be statistically significant (so retained during model 

selection) when individual time series would not be: see Castle et al. (2012a) for a more 

detailed discussion. The contributions of individual variables can be disentangled if 

needed.

For the following analysis, the first three principal components are entered for both 

North America and Eurasia. Cumulatively they explain 93.6 percent of the variation in 

North America and 88.5 percent of Eurasian variation. Table 12.1 summarizes the prin-

cipal components that account for variation in the biosphere, and Figure 12.7 shows 

the highly seasonal variation present in the biosphere as measured by PCs. The first 

principal component shows a higher amplitude in Eurasia compared to North America 

but the seasonal pattern is nearly identical. NDVI implicitly covers changes in land use 

since it is a measure of photosynthetic activity for a particular area. A forest that is 

cut down would result in a change of NDVI from around 11 to closer to zero for that 

particular region. However, once NDVI is calculated for large regions and reduced in 

dimensionality (by PCs), changes in land use would have to occur on a grand scale to be 

identified in the time series. The principal components of NDVI should, therefore, be 

interpreted primarily as the variation in plant activity of photosynthesis and respiratory 

release.

Table 12.1 Principal components for vegetation, 1981:7–2002:12

North America Proportion of variance Cumulative

Principal component 1 0.831

Principal component 2 0.064 0.895

Principal component 3 0.042 0.937

Eurasia

Principal component 1 0.735

Principal component 2 0.108 0.843

Principal component 3 0.042 0.885
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Oceanic Indicators: Temperature and Southern Oscillation

The measure of temperature used here is the anomaly in land and sea surface tem-

perature for the northern hemisphere. The temperature anomaly measure is expected 

to capture the main factors of ocean CO
2
 absorption and is available from the NASA 

Goddard Institute for Space Studies (GISS) (2011) Surface Temperature Analysis 

from 1880:1 to 2011:9. The data are measured as an index in 0.01 degrees Celsius of 

deviations from the 1951–80 base period (see Hansen and Lebedeff, 1987; Hansen et 

al., 2010 for the detailed measurement methodology). Land measures are taken from 

multiple stations and are combined and corrected for urban and other non- climatic 

factors. Sea surface temperature measures are restricted to ice- free regions. As Hansen 

et al. (2010) describe, temperature in the northern hemisphere has been increasing 

despite recent El Niño effects. Figure 12.8 shows temperature anomalies from 1958:3 

to 2010:9.

The feedback effect of CO
2
 is one of the main concerns in climate change. The level 

of atmospheric CO
2
 feeds into temperature which, in turn, affects the rate of growth of 

CO
2
, particularly through oceanic absorption. There would be a potential problem of 

endogeneity if the level of CO
2
 were modeled by temperature. However, lagged tempera-

ture measures should be predetermined for the growth of CO
2
.

To take account of weather phenomena through the Southern Oscillation we 

include the Southern Oscillation index (SOI). Data on the SOI are available from the 

Australian Bureau of Meteorology (2011) from 1876:1 until 2011:9. Figure 12.9 shows 

the SOI for 1958 until 2011, with a noticeably strong episode of El Niño in 1997–98 

(SOI , 0).
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Figure 12.7 First principal components for Eurasian and North American NDVI
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Economic Indicators

Anthropogenic contributions to atmospheric CO
2
 are normally approximated by low- 

frequency economic indicators; for example annual GDP, population, an estimate 

of total CO
2
 emissions or cement production (see Section 2). This works reasonably 

well when trying to explain the long- run dynamics of carbon. However, using only 
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Figure 12.8 Land and sea temperature anomalies for the northern hemisphere
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Figure 12.9 Southern Oscillation index

FOUQUET 9780857933683 PRINT (M3058).indd   305FOUQUET 9780857933683 PRINT (M3058).indd   305 05/04/2013   10:0605/04/2013   10:06



306  Handbook on energy and climate change

 low- frequency annual measures does not allow for estimation of any effect of anthro-

pogenic emissions on the seasonal variation of CO
2
. High- frequency (monthly) meas-

ures of anthropogenic output permit a richer analysis. Here we use a combination of 

multiple low- frequency (annual) and high- frequency (monthly) indicators. The annual 

data are included to provide a robustness check and potentially account for long- run 

growth. Monthly measures are included for short- run dynamics, which could explain 

the seasonal fluctuations as well as long- run growth. To capture atmospheric transport, 

 variables are chosen to reflect North America as well as Europe/Asia.

High- frequency (monthly) measures

The main high- frequency indicators for anthropogenic contribution to CO
2
 used here 

are monthly industrial production indices for multiple regions. Industrial production 

for North America is given by the US Industrial Production Index (2005 5 100) avail-

able from the Federal Reserve (2011). The data are not seasonally adjusted and range 

from 1919:1 until 2011:5. The index measures real output in the sectors covering manu-

facturing, electric and gas utilities, and mining, and thus accounts for a large share in 

business- cycle fluctuations. To cover Europe and Asia, industrial production indices for 

the UK, Germany, India and Japan are included. These measures function as a proxy for 

business- cycle fluctuations in the Eurasian region. Ideally Chinese and Russian produc-

tion should also be included; however, no data are available on industrial production 

for both countries at the required frequency and time span.2 UK industrial produc-

tion is measured as an index (2005 5 100) of non- seasonally adjusted manufacturing 

activities. The data are obtained from the Office of National Statistics (2011) and range 

from 1968:1 to 2011:6. German and Japanese industrial production is measured by the 

industrial production index (2005 5 100) covering manufacturing, mining and electric-

ity, gas and water supply. The series is available only in seasonally adjusted format from 

the OECD (2011) from 1960:1 until 2011:2, and for Germany after October 1990 the 

data account for the accession of the German Democratic Republic to West Germany. 

The Indian industrial production index (2005 5 100) covers manufacturing, mining and 

electricity (Ministry of Statistics, Government of India 2011) and ranges from 1981:4 to 

2011:5. Table 12.2 and Figure 12.10 summarize the high-frequency measures.

The seasonal adjustment of German and Japanese industrial production is visible in 

their dampened seasonal cycles. The higher seasonal variation in UK industrial produc-

tion likely stems from it covering primarily manufacturing, which is more volatile to 

business cycles and seasonal factors than mining and energy production included in the 

other indices.

Table 12.2 High- frequency (monthly) variables

Measure Description Range Source

US industrial production Index 2005 5 100 1958:3–2011:5 US Federal Reserve

UK industrial production Index 2005 5 100 1968:1–2011:6 ONS

Germany industrial production Index 2005 5 100 1960:1–2011:2 OECD

India industrial production Index 2005 5 100 1981:4–2011:5 Govt. of India

Japan industrial production Index 2005 5 100 1960:1–2011:2 OECD
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These industrial production series are highly collinear, so we again employ principal 

components to reduce the dimensionality and work with orthogonal variables, which 

improves robustness in selection as discussed above. Table 12.3 summarizes the first 

three industrial production components, which cumulatively explain approximately 97 

percent of variation in production. Figure 12.11 compares US industrial production with 

the three components used in selection.

These are the first three anthropogenic high- frequency components included in the 

GUM. While industrial production reflects the intensity of economic activity associ-

ated with higher emissions, it does not account for changing emission intensity. More 

efficient processes could lead to an increase in industrial production without an equiva-

lent increase in emissions. This is a crucial missing measure and difficult to control for: 

an attempt is made by including overall long- run emissions estimates in addition to 

production.

Low- frequency (annual) measures

Low- frequency anthropogenic measures are variables reported on an annual basis, and 

capture the long term of human- driven CO
2
 emissions. These low- frequency variables 

include total estimated CO
2
 emissions (in thousand metric tons of carbon) for North 
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Figure 12.10 Industrial production indices, 2005 5 100

Table 12.3  Principal components for industrial production, 1981:4–2011:2

IP Proportion of variance Cumulative

Principal component 1 0.809

Principal component 2 0.119 0.928

Principal component 3 0.047 0.975
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America, Western Europe, Eastern Europe, Central Asia and the Far East.3 Emissions 

are estimated based on the burning of fossil fuels, cement manufacture and gas flaring by 

the US Department of Energy (see Marland et al., 2011) from 1950 to 2007. Table 12.4 

summarizes the annual measures.

In order to usefully combine these annual variables with the monthly measures listed 

above, all annual variables are linearly interpolated to monthly observations. In the 

case of moving from annual to monthly observations, this method estimates a straight 

line over 12 months between each annual observation. While this may be restrictive, if 

the seasonal structure of the variables is not known there is no a priori reason to prefer 

a different interpolation algorithm. In any case, seasonal dummy variables and IIS can 

‘pick up’ any systematic or large deviations. As before, the low- frequency measures are 

reduced in dimensionality by calculating their principal components. The first three 

components capture 99 percent of variation in the emissions series. Table 12.5 shows 
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Figure 12.11 Industrial production principal components

Table 12.4 Low- frequency (annual) variables

Measure Description Range Source

N. America CO
2
 emissions 000s tons carbon 1950–2007 US Dep. of Energy

W. Europe CO
2
 emissions 000s tons carbon 1950–2008 US Dep. of Energy

E. Europe CO
2
 emissions 000s tons carbon 1950–2008 US Dep. of Energy

Central Asia CO
2
 emissions 000s tons carbon 1950–2008 US Dep. of Energy

Far East CO
2
 emissions 000s tons carbon 1950–2008 US Dep. of Energy
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explained variation of each component and Figure 12.12 displays interpolated CO
2
 emis-

sions as well as the three low- frequency PCs.

The components of the interpolated annual variables are included to account for 

potential low- frequency movements, the industrial production short- term indicators are 

expected to be sufficient to capture inter- annual dynamics. These are the first three low- 

frequency anthropogenic components included in the GUM.

5 ESTIMATION

Overview

The dependent variable DCO
2
 is modeled as a finite autoregressive- distributed lag model 

(ADL) (see, e.g., Hendry, 1995):

 DCO2,t 5 a(L)DCO2,t21 1 a
p

i51

bi
(L)xi,t 1 z rt� 1 et (12.8)
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2 
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Figure 12.12 CO
2
 emissions and principal components

Table 12.5 Low- frequency (annual) components

CO
2
 emissions Proportion of variance Cumulative

Principal component 1 0.733

Principal component 2 0.222 0.955

Principal component 3 0.039 0.994
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where L denotes the lag operator, and p is the number of explanatory variables x
i
. The 

vector z consists of non- lagged deterministic terms such as a linear time trend, centered 

seasonal variables and impulse indicators. Let q denote the total number of explanatory 

variables that appear on the left- hand side of equation (12.8). Then the change in atmos-

pheric CO
2
 is modeled as a function of past values of the change in CO

2
, current and past 

values of selected independent variables x
i
, and deterministic components. Figure 12.13 

graphs DCO
2,t

 for 1982:7–2002:12. The seasonal variation is so large that it is difficult to 

discern the slow but persistent growth.

There is a large number of potential explanatory variables x
i
 in modeling atmos-

pheric CO
2
. The model needs to account for all the above- mentioned anthropogenic 

and natural factors as well as their lag reactions, as CO
2
 is a highly autocorrelated time 

series. Adding IIS quickly moves the general unrestricted model to a situation with more 

explanatory variables than observations. This used to be a major difficulty in modeling; 

however, as outlined in Section 3, it can now be handled by estimation in blocks using 

Autometrics to select variables to retain in the final model in the form of (12.8). The 

estimation procedure operates as follows: first the theory- motivated GUM is specified, 

then estimation in blocks following the Autometrics algorithm selects down to individual 

terminal models. The union of terminal models is captured by the final GUM. Formally, 

the selection for the final model can use the likelihood- based SIC, although, as each 

terminal model represents a valid representation, final model selection can be based on 

other theoretical considerations.

Formulation of the GUM

The dependent variable that is being modeled is DCO
2
 (the change in atmospheric CO

2
 

measured at Mauna Loa). While Autometrics has been shown to be effective at recov-

ering the data-generating process in large models, the algorithm is not perfect and is 

sensitive to initial specification. As a robustness check, therefore, we estimate multiple 

variations of initial sample specifications. The subsample GUMs 1 and 2 are selected 
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Figure 12.13 Dependent variable DCO
2,t

 over 1982:7–2002:12

FOUQUET 9780857933683 PRINT (M3058).indd   310FOUQUET 9780857933683 PRINT (M3058).indd   310 05/04/2013   10:0605/04/2013   10:06



Anthropogenic influences on atmospheric CO
2
   311

for different initial variables, although they always include the main variables of inter-

est: short- term dynamics captured by monthly industrial production and the control 

variables for natural factors – temperature, SOI and vegetation. Non- anthropogenic 

emissions are captured through potential oceanic release of CO
2
 (SOI and temperature) 

and the respiratory release phase in vegetation (NDVI close to zero). The models include 

general control variables of a constant, a linear time trend and 11 centered seasonal 

dummy variables (annual frequency −1 dummies with mean zero in the long run), which 

are subject to selection so not automatically included in terminal models.

To capture interseasonal transport dynamics, interaction terms for winter/summer 

are included with each vegetation measure. Summer is defined as May–October and 

winter is defined as November–April. Thus binary variables (winter and summer 

weights) are interacted with all region- specific NDVI variables and included in the 

GUM. This could be extended to smoothed weights following a sine/cosine pattern, but 

binary weights are expected to capture the main seasonal effect of different atmospheric 

transport.

Sample 1 includes all variables measured at a monthly frequency: natural control vari-

ables as well as the first three components of industrial production. Sample 2 includes all 

short- term dynamics as in sample 1, and adds the first three low- frequency interpolated 

fossil fuel emission components.

Since DCO
2
 is a highly autocorrelated series when measured monthly, a long lag length 

is allowed. Based on the partial- autocorrelation function (PACF) of DCO
2
, the longest 

lag length is selected to be 12, as longer lags fall below the 95 percent critical level. Figure 

12.14 shows the PACF for DCO
2
. Additionally, 12 lags of each independent variable are 

added to GUM 1. Lag lengths for GUM 2 are specified based on selection from GUM 1 

to compensate for a larger number of independent variables (see Section 6).

As controls for the terrestrial biosphere are included in every GUM, it is the NDVI 

measure that defines the maximum number of available observations. CO
2
 is measured 

at Mauna Loa from 1958:3 until the present, but NDVI data are only available from 

1981:7 until 2002:12, so the vegetation control limits the maximum number of observa-

tions to 258. A maximum lag length of 12 then leads to the estimated sample size being 

246 observations (T 5 246).

Impulse indicator saturation includes one binary variable for each observation. In the 

case of a model with 12 lags, this means that 246 individual binary variables are added 
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Figure 12.14 Partial- autocorrelation function for DCO
2
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to the GUM. Tables 12.6 and 12.7 provide an overview of the variables making up the 

sample- specific GUMs.

Non- stationarity

Non- stationarity is a common feature of time- series data. Broadly, a non- stationary 

process is defined as a process whose distribution changes over time, for example the 

mean or variance of the process is non- constant (see Hendry and Juselius, 2000, for a 

detailed discussion). The trending level of CO
2
 measured at Mauna Loa is non- stationary 

as its mean is increasing with time. There are various forms of non- stationarity. The time 

series could be integrated processes (a time series is said to be integrated of order r, or 

I(r), if differencing the series r times yields a stationary process), or alternatively there 

could be structural breaks/shifts in coefficients or levels. Non- stationarity through struc-

tural breaks need not be removed by differencing. IIS is used to detect structural breaks 

(as well as mis- specification): if a large number of impulse indicators is selected, the 

model may be mis- specified, data badly mis- measured; or there are breaks in the data. 

Non- stationary data are not a problem in automatic model selection so long as it is 

approached correctly. Selection in Autometrics is primarily based on t-  and F- statistics 

that under non- stationarity can follow non- standard distributions. Sims et al. (1990) 

show that the limit distributions of these test statistics are standard if the original equa-

tion can be rewritten in terms of coefficients on mean- zero stationary variables. That is 

to say, the actual re- parametrization is not required, merely the existence of a linear re- 

parametrization in mean- zero variables is sufficient for the test statistics in the original 

equation to have standard distributions. So long as the equation can be written that way, 

selection based on t-  and F- statistics will be valid. However, there are potential problems 

Table 12.6  GUM: sample 1

Variables included Lag length

Temperature  12

NDVI PC1 Eurasia (Eur) 1 winter interaction  12

NDVI PC2 Eurasia (Eur) 1 winter interaction  12

NDVI PC3 Eurasia (Eur) 1 winter interaction  12

NDVI PC1 North America (NA) 1 summer interaction  12

NDVI PC2 North America (NA) 1 summer interaction  12

NDVI PC3 North America (NA) 1 summer interaction  12

SOI  12

Industrial production comp. 1  12

Industrial production comp. 2  12

Industrial production comp. 3  12

Constant yes

Trend yes

Centered seasonal variables yes

Impulse indicators yes

Total variables 492
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during selection when a path is considered in which this re- parametrization is not possi-

ble. Such a difficulty is hard to avoid, so is handled here by using tight significance levels 

that allow for possible non- standard distributions. As Figure 12.5 showed, D
12

CO
2
 mani-

fests a strong stochastic trend so is clearly not stationary: in monthly data, that trend is 

‘swamped’ by the seasonal variation. Due to this strong seasonality, augmented Dickey–

Fuller (Dickey and Fuller, 1981) type tests would not successfully identify a unit root. 

Seasonal unit- root tests are somewhat unreliable as other determinants, such as breaks, 

are not included, but based on the apparent stochastic trend in D
12

CO
2
, it is safe to say 

that DCO
2
 is integrated of order one, I(1). Unit roots can also not be rejected for most 

of the independent time- series variables that are included as potential determinants. The 

order of integration of the dependent variables is then the same as the order of integra-

tion of the independent variables. Given that the model can be written as coefficients on 

stationary mean- zero variables (see Banerjee et al., 1993), we proceed by estimating the 

model in levels with tight significance levels to account for selection effects where an I(0) 

re- parametrization is not possible.

Algorithm Specification

The Autometrics algorithm is used to estimate and select within the GUMs described in 

Tables 12.6 and 12.7. The algorithm is calibrated to the following parameters. Selection 

is done at a 0.1 percent significance level, considerably tighter than the conventional 5 

percent or 1 percent used in the literature. In models starting with K irrelevant variables, 

Table 12.7  GUM: sample 2

Variables included Lag length

Temperature   6

NDVI PC1 Eurasia (Eur) 1 winter interaction  12

NDVI PC2 Eurasia (Eur) 1 winter interaction  12

NDVI PC3 Eurasia (Eur) 1 winter interaction  12

NDVI PC1 North America (NA) 1 summer interaction  12

NDVI PC2 North America (NA) 1 summer interaction  12

NDVI PC3 North America (NA) 1 summer interaction  12

SOI   6

Industrial production comp. 1   6

Industrial production comp. 2   6

Industrial production comp. 3   6

CO
2
 emissions comp. 1   6

CO
2
 emissions comp. 2   6

CO
2
 emissions comp. 3   6

Constant yes

Trend yes

Centered seasonal variables yes

Impulse indicators yes

Total variables 483
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this implies that on average 0.001K irrelevant variables are retained in the terminal 

model. The current model is reduced by removing the least significant variable until vari-

ables cannot be dropped at the 0.1 percent level. At the termination of each path, models 

are backtested to the initially specified GUM when feasible. Diagnostic tests, defined 

formally below (see Doornik and Hendry, 2009), are conducted at a 1 percent level, for 

normality, heteroskedasticity, coefficient constancy (set to a 70 percent sample split), 

residual autocorrelation and autoregressive conditional heteroskedasticity, both based 

on eight lags. The specified GUM includes more variables than observations with IIS, 

so diagnostic tests are only applied to terminal models, and, if satisfactory, conventional 

standard errors are used.

6 RESULTS

Overview

The specifications given in Tables 12.6 and 12.7 are selected from general unrestricted 

models using Autometrics by the algorithm outlined in Section 5. Sample 1 includes all 

natural controls and monthly anthropogenic components; sample 2 includes all natural 

controls as well as monthly and annual anthropogenic components. The crucial feature 

of Autometrics is determining the selection of variables, rather than their estimated coef-

ficients, although bias corrections have been implemented. Below, we also note the rela-

tive importance of individual variables through decomposition of explained variance.

The selection algorithm results in 14 terminal models for sample 1, and 16 terminal 

models for sample 2. It may surprise that so many congruent, undominated different 

representations can be found at such a tight significance level as 0.1 percent, but this 

merely reflects the high collinearity both between the different series and over time as 

represented by their lagged values. Most of the terminal models are minor variations 

on others as the final GUMs had 21 and 30 variables respectively.4 The final models are 

selected from the set of terminal models by the smallest SIC value. Equations (12.9) and 

(12.10) show the selected final models for sample 1 and sample 2 respectively.

 DCO2,t 5  0.24
(0.053)

 DCO2,t21 2 0.67
(0.049)

 DCO2,t22 1 0.20
(0.05)

 DCO2,t23 (12.9)

 2 0.32
(0.037)

 DCO2,t24 1 0.24
(0.057)

 IP1t 21
2 0.30

(0.056)
 IP1t 24

 2 0.20
(0.034)

 IP2t24
1 0.15

(0.035)
 IP3t

1 0.003
(0.0005)

 Tempt24

 2 0.006
(0.0013)

 SOIt25 2 0.042
(0.007)

 NDVI1,Eurt 21
1 00.019

(0.003)
 NDVI1,Eurt 210

 2  0.020
(0.006)

 NDVI1,Eurt
2

12
1 0.026

(0.007)
 w2NDVI3,Eurt 2 8
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 ŝ5 0.212 T 5 246 n 5 14 SIC 5 2 0.006 Far
(8, 224) 5 1.55

 c2
nd

(2) 5 1.47 Freset
(2, 230) 5 1.42 Farch

(8, 230) 5 1.07 Fhet
(28, 217) 5 1.42

Let F
name

 denote an approximate Lagrange- multiplier F- test, then F
ar

 tests for autocor-

relation of order k (Godfrey, 1978), F
het

 tests for heteroscedasticity (White, 1980), F
arch

 

tests for kth- order autoregressive conditional heteroskedasticity (ARCH: Engle, 1982), 

F
reset

 tests for functional- form mis- specification (White, 1980), and c2
nd

(2)  tests for non- 

normality (Doornik and Hansen, 2008).

 DCO2,t 5 2 0.57
(0.051)

 DCO2,t22 2 0.22
(0.050)

 DCO2,t24 1 00.27
(0.062)

 IP1t 21
 (12.10)

 2 0.34
(0.063)

 IP1t24
2 0.28

(0.039)
 IP2t24

1 0.16
(0.035)

 IP3t
2 0.74

(0.21)
 I1990(7)

 1 0.004
(0.0006)

 Tempt24 2 0.007
(0.001)

 SOIt25 2 0.047
(0.008)

 NDVI1,Eurt 

 2 0.044
(0.006)

 NDVI1,Eurt 23
1 0.033

(0.006)
 NDVI1,Eurt 211

2 0.042
(0.009)

 NDVI1,Eurt 212

 1 0.030
(0.008)

 NDVI2,Eurt 211
2 0.029

(0.007)
 w_NDVI2,Eurt 27

2 0.022
(0.006)

 w2NDVI2, Eurt 2 8

 10.035
(0.007)

 w_NDVI3,Eurt 28
20.039

(0.008)
 s_NDVI1,NAt 28

10.034
(0.007)

 s_NDVI1,NAt 29

 ŝ5 0.199 T 5 246 n 5 19 SIC 5 2 0.048 Far
(8, 219) 5 1.62

 c2
nd

(2) 5 0.044 Freset
(2, 225) 5 0.042 Farch

(8, 230) 5 0.57 Fhet
(36, 208) 5 1.03

First: as is to be expected from the theory, controls for natural factors are selected in 

both final models. Temperature anomalies enter the model with a positive coefficient, 

likely capturing the effect of oceanic uptake such that CO
2
 increases with higher tempera-

tures. Vegetation controls through the principal components of NDVI are selected in both 

models, as is the control for Southern Oscillation. However, a key finding is that in both 

terminal models, natural controls are insufficient to account for the variation in the change 

of atmospheric CO
2
. Anthropogenic factors captured through components of industrial 

output indices are consistently selected in both models. Selection of these components is 

highly consistent over the two models as the selected production components are identical 

in models 1 and 2. Selection of these is robust to the addition of emissions components 

which are not selected in sample 2, suggesting that the high- frequency measures provide a 

better approximation for anthropogenic emissions measured at Mauna Loa.

Second: most selected variables enter the model in lagged form. Only the third princi-

pal component of production (in samples 1 and 2) and the first component of Eurasian 

NDVI (in sample 2) have an estimated immediate effect on the growth of CO
2
. Most 

anthropogenic emissions and vegetation growth ‘lead’ measured atmospheric CO
2
 by 

suggested time periods of 1 to 12 months. Relative to the initial sizes of the GUMs, few 

variables are retained, yet relative to the tight significance levels, many more are retained 

than could be attributed to chance (less than 1 on average).
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Third: the final models appear to be well specified. As a result of the algorithm, all 

models pass tests for normality, heteroskedasticity, residual autocorrelation and autore-

gressive conditional heteroskedasticity. The number of selected indicators from IIS is 

low. There is only one indicator selected for 1990:7. This suggests that the model is cor-

rectly specified and there appear to be no real structural breaks or shifts in the change 

of atmospheric CO
2
. No deterministic variables are selected: no constant, time trend 

or centered seasonals appear in the final models. This suggests that changes in CO
2
 are 

well approximated by the selected final variables covering anthropogenic and natural 

factors. If constants are included post- selection (both not statistically different from 

zero in models 1 and 2), R2 can be used as a rough measure of goodness of fit. Both final 

models exhibit a high goodness of fit (R2 5 0.974 and 5 0.978 respectively). This is not 

a straight result of selection as Autometrics does not directly maximize the goodness of 

fit. Moreover, R2 measures should not be attributed much weight when assessing models, 

as there are preferred likelihood- based measures that also account for the number of 

parameters included.

GUM: Sample 1

Sample 1 in equation (12.9) covers all variables measured at a monthly frequency. 

Autometrics in sample 1 with 246 observations estimated 345 models reducing the 

number of explanatory variables from an initial 492 (split into initial six blocks) down 

to 14 in the final model. The final model passes the stationarity test on the residual, unit 

roots ranging from lags 1 to 12 are rejected at the 1 percent level using an ADF test. 

There are no impulse indicator variables selected in the final GUM. Together this pro-

vides evidence for a well- specified model that forms a stationary relationship.

Selection: neither the constant, the linear time trend nor centered seasonal variables 

feature in the final model, so that the seasonality and increase in the growth of CO
2
 are 

explained by the anthropogenic and natural factors. All selected variables (apart from 

IP
3t

) enter the model as lags, suggesting a delay in the effect of CO
2
 emissions/absorption 

and measurement at Mauna Loa. The longest lag on an anthropogenic component is 

four months.

The anthropogenic sources that are selected are all three principal components for 

industrial production at lag lengths ranging from immediate t to t − 4. Component 1 is 

selected at t − 1 and t − 4 with opposite signs, suggesting that it enters the model mainly 

as a difference. As these variables are principal components of production indices, the 

coefficients are not straightforward to interpret. The key result is the consistent selection, 

relative importance and lag length of these, rather than the signs of individual estimated 

coefficients.

The non- seasonally weighted principal components for NDVI are mostly selected, but 

only the Eurasian region is included. Given that the growth cycle is relatively similar in 

North America and Eurasia, this should not be over- interpreted. It is likely that the PCs 

for North American and Eurasian vegetation capture a very similar pattern and are to a 

considerable extent interchangeable. The negative coefficient on the first PC of vegeta-

tion (at t − 1, as well as in the long- run solution below) supports the theory that increased 

vegetation activity slows down CO
2
 growth. The near equal magnitude, opposite signs 

on t − 10 and t − 12 suggest a difference, a pattern also seen in (12.10). The coefficient 
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on temperature is positive at a lag of (t − 4), likely capturing reduced oceanic absorption 

under higher temperature. Southern Oscillation enters the model at a lag of five months 

with a negative coefficient. Thus, during El Niño episodes (SOI , 0), growth in CO
2
 

appears to increase, in line with findings of other papers (see Bacastow, 1976; Keeling 

and Revelle, 1985).

To quantify and assess the relative importance of each regressor, we decompose the 

total explained variation in DCO
2
. Decomposition is not straightforward when inde-

pendent variables are correlated. We use two measures, partial R2 and hierarchical par-

titioning. The partial R2 provides a measure of the marginal contribution to explained 

variation for a given variable, while holding other factors constant. In hierarchical 

partitioning the explained variance is decomposed by calculating the average contribu-

tion of each variable over all potential orderings of the variables (see Kruskal, 1987, and 

method LMG in Groemping, 2007).5 Individual variance contributions sum to unity and 

can be interpreted as percentages. This yields values for individual variables that sum to 

the total explained variance (R2). Table 12.8 ranks the selected variables by the partial R2 

and also reports relative importance based on hierarchical partitioning.

Based on this decomposition, the single largest (non- autoregressive) contribution 

comes from the Eurasian NDVI principal component of vegetation followed by indus-

trial production. The anthropogenic components cumulatively explain a large fraction 

of the variation in atmospheric CO
2
. Perhaps surprisingly, both the SOI and temperature 

are ranked low based on hierarchical partitioning.

GUM: Sample 2

Sample 2 in (12.10) covers all variables measured at a monthly frequency as well as 

interpolated annual components for long- term anthropogenic emissions. Lag selection 

for sample 2 is based on selection in sample 1. Selection in model 1 results in a maximum 

lag of 4 on anthropogenic components and 5 for temperature and SOI. The longest lag 

Table 12.8  GUM: sample 1 relative importance

Variable Partial R2 Hierarchical partitioning

DCO2,t22 0.4472 0.0661

DCO2,t24 0.2461 0.0643

NDVI1,Eurt210
0.1583 0.0257

IP2t –  4
0.1259 0.0036

NDVI1,Eurt21
0.1259 0.2795

Tempt24 0.1225 0.0067

IP1t–4
0.1105 0.0117

SOIt25 0.0836 0.0014

DCO2,t21 0.0796 0.1954

IP3t
0.0756 0.0074

IP1t–1
0.0727 0.0157

DCO2,t23 0.0619 0.0372

w2NDVI3,Eurt 2 8
0.0578 0.0200

NDVI1,Eurt 2 12
0.0483 0.2648
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for vegetation was selected at t − 12. Therefore GUM 2 starts with a maximum lag of 6 

for anthropogenic components, and a maximum lag of 12 for vegetation. Autometrics in 

sample 2 with 246 observations estimated 571 models, reducing the number of explana-

tory variables from an initial 483 (split into initial six blocks) down to 19 in the final 

model. Unit roots are rejected for the model residuals at the 1 percent level using ADF 

tests covering up to 12 lags. There is only a single impulse indicator selected (1990:7), 

suggesting no major breaks or mis- specification.

Selection: sample 2 results in a slightly higher number of selected variables in the 

final model relative to sample 1. In terms of robustness, selection is highly consistent 

relative to sample 1. Anthropogenic components, as well as temperature and Southern 

Oscillation, are selected identically to model 1. No deterministic terms are selected.

Anthropogenic emissions are captured solely by the principal components for indus-

trial production: the low- frequency fossil fuel measures are not selected. These findings 

suggest that high- frequency industrial production provides a better measure for anthro-

pogenic factors than interpolated fuel emissions. This may appear surprising given that 

anthropogenic emissions directly measure emitted CO
2
: however, this result likely stems 

from the annual frequency of CO
2
 emissions that miss any seasonal component.

In terms of natural controls, the estimated coefficient on temperature is positive and 

that on Southern Oscillation is negative, both as in the previous model. The selection 

of vegetation variables moves towards seasonally weighted Eurasian indicators but 

also adds North American NDVI measures. The selection of seasonally weighted veg-

etation measures supports the theory of atmospheric transport. The shift in selection 

of vegetation variables is likely due to the collinearity in the NDVI measure resulting 

from a similar growth cycle in North America and Eurasia. The selected indicator for 

1990:7 (July) suggests there was a reduction in growth relative to other years. Although 

the cause for this is not apparent in the data, it should be noted that such an indicator 

creates a step shift in the level of CO
2
, so may correspond to China’s resurgent growth 

thereafter.

Table 12.9 ranks the selected variables by relative importance based on the partial 

R2. Anthropogenic components rank similarly to model 1, with IP2t24 being the second 

largest (non- autoregressive) contributor to explained variation after Eurasian vegeta-

tion. However, the measure of relative importance matters – based on hierarchical par-

titioning, anthropogenic measures are ranked lower than vegetation, while still above 

temperature and SOI.

Comparisons between Sample 1 and Sample 2

GUM sample 1 and GUM sample 2 are estimated as robustness checks. Comparing 

Autometrics selection in samples 1 and 2, there is highly consistent selection of key 

variables. Industrial production, temperature, vegetation and Southern Oscillation are 

selected identically in both models. Anthropogenic emissions are consistently selected 

in the form of high- frequency industrial production rather than low- frequency annual 

emissions. Conversely, selection of regional NDVI varies slightly between models, 

which could be the result of a similar growing season and pattern in North America 

and Eurasia as measured through NDVI data. Differences in selection from sample 1 to 

sample 2 may seem surprising given that all vegetation variables in sample 1 are identi-

FOUQUET 9780857933683 PRINT (M3058).indd   318FOUQUET 9780857933683 PRINT (M3058).indd   318 05/04/2013   10:0605/04/2013   10:06



Anthropogenic influences on atmospheric CO
2
   319

cal to those in sample 2. However, the PCs are only orthogonal within regions, and are 

highly correlated between regions, as Figure 12.7 shows. The result of different selection 

may be due to computational short cuts, namely dropping branches in the tree search 

after a model failed backtesting, and block partitioning in Autometrics, which adversely 

affect consistent selection.

Overall, based on Autometrics selection, natural factors such as vegetation, tem-

perature and Southern Oscillation are necessary but not sufficient to explain changes in 

atmospheric CO
2
 measured at Mauna Loa. Industrial production variables are consist-

ently selected. Most estimated effects from selected variables affect DCO
2
 with a lag, 

and there seem to be few or no structural breaks in the relationships being modeled. As 

a further robustness check, future work will involve applying the estimation method to 

other measurement stations such as Barrow, Alaska (Keeling et al., 2008). Atmospheric 

CO
2
 at Barrow has been measured from 1974:2 until 2007:12 and displays higher ampli-

tude and higher autocorrelation due to its location relative to Mauna Loa.

Using relatively few assumptions, automatic model selection with Gets modeling can 

provide a tool to successfully model complex relationships. Starting from a broad GUM 

that nests the LDGP theoretically (accounting for natural and anthropogenic sinks and 

sources), the analysis proceeds with an agnostic approach to determine the key factors 

in changes in atmospheric CO
2
. First, automatic model selection reduces the GUM to 

terminal models. Shortcomings of automatic model selection are computational issues 

in Autometrics selection because of short cuts and block partitioning. However, the 

terminal models appear congruent (acceptable diagnostic tests, few to no indicators or 

seasonal dummies selected) and are also supported by theoretical conclusions from the 

Table 12.9  GUM: sample 2 relative importance

Variable Partial R2 Hierarchical partitioning

DCO2,t22 0.3582 0.0298

NDVI1,Eurt 2 3
0.2147 0.0290

IP2t24 0.1814 0.0040

NDVI1,Eurt
0.1376 0.1750

Tempt24 0.1349 0.0055

SOIt25 0.1149 0.0013

IP1t24
0.1109 0.0067

NDVI1,Eurt 2 11
0.1098 0.0950

w_NDVI3,Eurt 2 8
0.0974 0.0122

s_NDVI1,NAt 2 8
0.0936 0.0550

s_NDVI1,NAt 2 9
0.0869 0.0464

IP
3t

0.0840 0.0034

NDVI1,Eurt 2 12
0.0813 0.1740

DCO2,t24 0.0805 0.0778

IP1t–1
0.0792 0.0086

w_NDVI2,Eurt 2 7
0.0770 0.0780

w_NDVI2,Eurt 2 8
0.0605 0.1125

NDVI2,Eurt 2 11
0.0555 0.0810

I
1990(7)

0.0507 0.0018
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broader literature – natural effects are selected with the expected signs on coefficients. 

Key in the results is that additionally to the natural determinants selected, all terminal 

models include a large number of anthropogenic factors. The explained variance is 

decomposed to establish the relative importance of the variables. Using hierarchical 

partitioning and ranking based on partial correlations, the anthropogenic contribution 

to explained variation is quantifiable and found to be high.

From Changes to Levels

The models estimated as GUM sample 1 and GUM sample 2 describe the change in 

atmospheric CO
2
, DCO

2
. While most of the analysis has been focused on the change in 

CO
2
, it is possible to recover the estimated level from the models 1 and 2. Level estimates 

for model 1 and model 2, based on CO2,t 5 DCO2,t 1 CO2,t21 are given in Figure 12.15 

and show the close fit. The next step is to attribute the components of the long- run 

explanation. To do so, we derive the relation after all dynamics from lagged variables 

have been solved out (the ‘long- run solution’: see Hendry, 1995). In a simple ADL(1) of 

the form

 yt 5 l1x1,t 1 l2yt21 1 et (12.11)

where | l
2 
| , 1, the long- run conditional expected value is

 E[y 0x1
] 5 l1x1/ (1 2 l2

) 5 b1x1 (12.12)
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Figure 12.15 Graphs of fitted and actual values in differences and levels
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Then, based on the theoretical specifications given in equations (12.5)–(12.7), the solved 

estimated model is in the approximate form given in equation (12.13):

 DCO2,t 5 b1x1,t 1 b2x2,t 1 c1 bqxq,t 1 et (12.13)

This can be rewritten as

 CO2,t 5 CO2,t21 1 b1x1,t 1 b2x2,t 1 c1 bqxq,t 1 et (12.14)

Recursive substitution for CO2,t21,CO2,t22, . . . in equation (12.14) yields

 CO2,t 5 CO2,0 1 b1a
t

j51

x1, j 1 b2a
t

j51

x2, j 1 c1 bqa
t

j51

xq, j 1 et (12.15)

 where et 5 a t

j51
ej

We divide the variables into two different groups: let s be the number of variables xi,t 

that  have a stationary cumulative sum (non- trending) g t
j51xi, j, I(0) , so that q − s 

variables have a non-stationary cumulative sum ( trending) gt
j51xi, j , I(r) , where r . 0. 

Equation (12.15) can then be expressed as

 CO2,t 5 CO2,0 1 x rs,tbs 1 x rq2s,t bq2s 1 e2t (12.16)

where x rs,t and x rq2s,t are s 3 1 and (q − s) 3 1 column vectors respectively with g t

j51
xi, j as 

their row elements. Equation (12.16) implies that the trending level of CO
2
 is a function 

of the cumulative sums of the stationary (x rs,t) and non- stationary (x rq2s,t) variables in our 

model. Stationary variables in x rs,t by nature cannot drive the trend. Only explanatory 

variables with non- stationary cumulative sums, x rq2s,t, determine the trend. This provides 

a straightforward method of evaluating the underlying factors of the long- run trend.

Out of the selected variables in models 1 and 2, only a subset exhibits trending cumula-

tive sums, which are all the anthropogenic factors and the temperature anomaly. Both 

natural controls of NDVI and SOI remain approximately stationary around zero over 

time. Importantly, neither final model includes a deterministic intercept or trend, which 

on summation would become a linear or a quadratic time trend. However, summed 

variables do not have a straightforward interpretation in the case of PCs of industrial 

output and temperature. The trending temperature anomaly is likely a mutually sup-

porting feedback effect, as mentioned in Section 4. Overall, the trend in the levels of 

CO
2
 is derived from the trends in the independent variables in both estimated models, 

so is driven primarily by the PCs and partly by temperature. Specifically, the empirical 

equivalents of (12.16) for model 1 are

 x rs,tbs 5 2 0.0038a
t

j51

SOIj 1 a2 0.0275a
t

j51

NDVI1,Eurj
1 0.0169a

t

j51

w_NDVI
3,Eurj

b  (12.17)

 x rq2s,t bq2s 5 2 0.037a
t

j51

IP1j
2 0.127a

t

j51

IP2j
1 0.097a

t

j51

IP3j
1 0.0018a

t

j51

Tempj (12.18)
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Figure 12.16 shows the resulting coefficient- weighted cumulative sums of vegetation 

(NDVI
EUR

 principal components), SOI, and the combined anthropogenic components 

(IP
1
 to IP

3
 and temperature trend) for both models 1 and 2, together with the recorded 

level of CO
2
. The industrial production components and temperature approximate the 

level of CO
2
 well, marking a slight slowdown in the trend around 1991–93. Both cumula-

tive stationary components vary over a small range, so contribute little to the long- run 

changes. Even though the model is estimated in net inflows to atmospheric CO
2
, in 

re- parametrized form it can explain the long- run trend – and attributes it primarily to 

anthropogenic emissions. This is an outcome of the data analysis and is not enforced.

7 CONCLUSIONS

We identified anthropogenic contributions to atmospheric CO
2
 measured at Mauna 

Loa using an automatic model selection algorithm. Traditionally, estimation of anthro-

pogenic effects on CO
2
 relied on a priori selection of variables, which may not be 

appropriate in complex relations, low- frequency measures of anthropogenic emissions, 

and decompositions of time series. Using Autometrics in a general to specific modeling 

approach allows for model selection with more variables than observations, stringent 

mis- specification testing and a more agnostic way of modeling complicated interactions. 

The algorithm is applied to model changes in atmospheric CO
2
 controlling for natural 

as well as anthropogenic sinks and sources without a priori restrictions of the determi-

nants. While they are not completely robust to initial specification, we find that natural 

factors such as vegetation, temperature and the Southern Oscillation are necessary, but 

not sufficient in explaining variation of atmospheric CO
2
. Industrial production compo-

1985 1990 1995 2000

340

350

360

370 CO2 ML
Long-run model 1 fit 
Long-run model 2 fit 

1985 1990 1995 2000

–1

0

1

2
cumulated SOI 1 

cumulated SOI 2 

1985 1990 1995 2000

–5

0

5 cumulated  NDVI 1 

cumulated  NDVI 2 

Figure 12.16 Level of CO
2
 and cumulative sums of anthropogenic and natural factors
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nents measured monthly are highly significant and consistently selected in the estimated 

models. A higher proportion of variation should be attributed to anthropogenic sources 

than has been previously the case in the literature. Producing congruent models, our 

methodology introduces Gets modeling through Autometrics as a useful tool in modeling 

complicated climate relationships.

NOTES

* This research was supported in part by grants from the Open Society Foundation and the Oxford Martin 
School. We thank Roger Fouquet for useful comments and Qin Duo for helpful notes on Chinese 
production.

1. 1 ppm by volume of CO
2
 in the atmosphere is approximately equal to 2.13 gigatons of carbon: see Clark 

(1982) and http://cdiac.ornl.gov/pns/convert.html.
2. Chinese gross industrial output is only available from 1979 to 1999 with a change in measure thereafter. 

Inclusion of this series did not improve selection at the cost of a reduction in observations.
3. See Marland et al. (2011) for a detailed listing of which countries are included. Eastern Europe includes 

Russia, Central Asia includes China, and India is covered by the Far East category.
4. Detailed results are available from the authors on request.
5. An intercept is forced to be retained in selection of these models, though it is not statistically different from 

zero for models 1 and 2.
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